scholarly journals Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy

2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Hooi Ling Teoh ◽  
Kate Carey ◽  
Hugo Sampaio ◽  
David Mowat ◽  
Tony Roscioli ◽  
...  

Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.

2012 ◽  
Vol 36 (4) ◽  
Author(s):  
Ina Vogl ◽  
Sebastian H. Eck ◽  
Anna Benet-Pagès ◽  
Philipp A. Greif ◽  
Kaimo Hirv ◽  
...  

AbstractOver the past 6 years, next generation sequencing (NGS) has been established as a valuable high-throughput method for research in molecular genetics and has successfully been employed in the identification of rare and common genetic variations. All major NGS technology companies providing commercially available instruments (Roche 454, Illumina, Life Technologies) have recently marketed bench top sequencing instruments with lower throughput and shorter run times, thereby broadening the applications of NGS and opening the technology to the potential use for clinical diagnostics. Although the high expectations regarding the discovery of new diagnostic targets and an overall reduction of cost have been achieved, technological challenges in instrument handling, robustness of the chemistry and data analysis need to be overcome. To facilitate the implementation of NGS as a routine method in molecular diagnostics, consistent quality standards need to be developed. Here the authors give an overview of the current standards in protocols and workflows and discuss possible approaches to define quality criteria for NGS in molecular genetic diagnostics.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zi-Wei Lan ◽  
Min-Jia Xiao ◽  
Yuan-lin Guan ◽  
Ya-Jing Zhan ◽  
Xiang-Qi Tang

Abstract Background Listeria monocytogenes (L. monocytogenes) is a facultative intracellular bacterial pathogen which can invade different mammalian cells and reach to the central nervous system (CNS), leading to meningoencephalitis and brain abscesses. In the diagnosis of L. monocytogenes meningoencephalitis (LMM), the traditional test often reports negative owing to the antibiotic treatment or a low number of bacteria in the cerebrospinal fluid. To date, timely diagnosis and accurate treatment remains a challenge for patients with listeria infections. Case presentation We present the case of a 66-year-old woman whose clinical manifestations were suspected as tuberculous meningoencephalitis, but the case was finally properly diagnosed as LMM by next-generation sequencing (NGS). The patient was successfully treated using a combined antibacterial therapy, comprising ampicillin and trimethoprim-sulfamethoxazole. Conclusion To improve the sensitivity of LMM diagnosis, we used NGS for the detection of L. monocytogenes. Hence, the clinical utility of this approach can be very helpful since it provides quickly and trust results.


Author(s):  
Yinan Yang ◽  
Xiaobin Hu ◽  
Li Min ◽  
Xiangyu Dong ◽  
Yuanlin Guan

Abstract Background Encephalitis is caused by infection, immune mediated diseases, or primary inflammatory diseases. Of all the causative infectious pathogens, 90% are viruses or bacteria. Granulomatous amoebic encephalitis (GAE), caused by Balamuthia mandrillaris, is a rare but life-threatening disease. Diagnosis and therapy are frequently delayed due to the lack of specific clinical manifestations. Method A healthy 2 year old Chinese male patient initially presented with a nearly 2 month history of irregular fever. We present this case of granulomatous amoebic encephalitis caused by B. mandrillaris. Next generation sequencing of the patient’s cerebrospinal fluid (CSF) was performed to identify an infectious agent. Result The results of next generation sequencing of the CSF showed that most of the mapped reads belonged to Balamuthia mandrillaris. Conclusion Next generation sequencing (NGS) is an unbiased and rapid diagnostic tool. The NGS method can be used for the rapid identification of causative pathogens. The NGS method should be widely applied in clinical practice and help clinicians provide direction for the diagnosis of diseases, especially for rare and difficult cases.


2020 ◽  
Vol 83 ◽  
pp. 102423 ◽  
Author(s):  
Laura Villarreal-Martínez ◽  
Marisol Ibarra-Ramirez ◽  
Geovana Calvo-Anguiano ◽  
José de Jesús Lugo-Trampe ◽  
Hilda Luna-Záizar ◽  
...  

2018 ◽  
Vol 159 (49) ◽  
pp. 2095-2112
Author(s):  
Melinda Erdős

Abstract: Next generation sequencing methods represent the latest era of molecular genetic diagnostics. After a general introduction on primary immunodeficiencies, the author summarizes the importance of molecular genetic studies, especially next generation sequencing in the diagnosis of primary immunodeficiencies. Another purpose of the manuscript is to give a brief summary on the methodological basis of next generation sequencing. The author analyzes the advantages and disadvantages of primary immunodeficiency gene-panel sequencing and whole-exome and whole-genome sequencing. Primary immunodeficiency genes and diseases recognized by next generation sequencing is also summarized. Finally, the author emphasizes the indispensability of gene level diagnostics in primary immunodeficiencies and presents the results achieved in this field in Hungary. Orv Hetil. 2018; 159(49): 2095–2112.


2014 ◽  
Author(s):  
Nihal Thomas ◽  
D M Mahesh ◽  
Aaron Chapla ◽  
H S Asha ◽  
Shrinath Shetty ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Jiejun Shi ◽  
Naibin Yang ◽  
Guoqing Qian

Background: Talaromycosis is a serious fungal infection which is rare in immunocompetent people. Since its clinical manifestations lack specificity, it is easy to escape diagnosis or be misdiagnosed leading to high mortality and poor prognosis. It is necessary to be alert to the disease when broad-spectrum antibiotics do not work well in immunocompetent patients.Case Presentation: A 79-year-old man was admitted to our Infectious Diseases Department for recurrent fever and cough. Before admission he has been treated with piperacillin-tazobactam, moxifloxacin followed by antituberculous agents in other hospitals while his symptoms were not thoroughly eased. During the first hospitalization in another hospital, he has been ordered a series of examination including radionuclide whole body bone imaging, transbronchial needle aspiration for subcarinal nodes. However, the results were negative showing no neoplasm. After being admitted to our hospital, he underwent various routine examinations. The initial diagnosis was bacterial pneumonia, and he was given meropenem injection and tigecycline injection successively, but there were no improvement of symptoms and inflammatory indicators. In the end, the main pathogen Talaromyces marneffei was confirmed using Metagenomic Next-Generation Sequencing (mNGS), and his clinical symptoms gradually relieved after targeted antifungal treatment using voriconazole.Conclusion: When empirical anti-infective treatment is ineffective, it is necessary to consider the possibility of opportunistic fungal infections on immunocompetent patients. mNGS, as a new generation of pathogenic testing methods, can often detect pathogenic bacteria faster than traditional methods, providing important help for clinical decision-making.


Sign in / Sign up

Export Citation Format

Share Document