scholarly journals A Study of an Iterative Channel Estimation Scheme of FS-FBMC System

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
YongJu Won ◽  
JongGyu Oh ◽  
JinSeop Lee ◽  
JoonTae Kim

A filter bank multicarrier on offset-quadrature amplitude modulation (FBMC/OQAM) system is an alternative multicarrier modulation scheme that does not need cyclic prefix (CP) even in the presence of a multipath fading channel by the properties of prototype filter. The FBMC/OQAM system can be implemented either by using the poly-phase network with fast fourier transform (PPN-FFT) or by using the extended FFT on a frequency-spreading (FS) domain. In this paper, we propose an iterative channel estimation scheme for each sub channel of a FBMC/OQAM system over a frequency-spreading domain. The proposed scheme first estimates the channel using the received pilot signal in the subchannel domain and interpolates the estimated channel to fine frequency-spreading domain. Then the channel compensated FS domain pilot is despread again to modify the channel state information (CSI) estimation. Computer simulation shows that the proposed method outperforms the conventional FBMC/OQAM channel estimator in a frequency selective channel.

2012 ◽  
Vol 6-7 ◽  
pp. 871-875
Author(s):  
Zi Wei Zheng

Alleviate the multipath delay spread and suitable for broadband transmission efficiency, orthogonal frequency division multiplexing wireless local area network (WLAN) is widely used to assist inverse fast Fourier transform and fast Fourier transform operation domain. Orthogonal frequency division multiplexing is a blow to the broadcast channel multipath fading and high data throughput, transmission, wireless fading channel method, which is widely used to support high performance bandwidth-efficient wireless multimedia services. Several times in the transmitter and receiver antenna technology allows data transfer rate and spectrum efficiency and the use of multiple transmit antennas and multiple receive antennas through spatial processing. High-precision channel estimation scheme is very important wideband multi-carrier orthogonal frequency complex WLAN systems use multiple antenna receiver based division of labor and the overall multi-carrier orthogonal frequency multiplexing division of performance-based WLAN system is to crucial antenna to receive the symbol error rate. In this article, the iterative channel estimation scheme proposed multi-carrier orthogonal frequency division multiplexed using multiple antennas receiver-based WLAN system.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Han Wang ◽  
Wencai Du ◽  
Xianpeng Wang ◽  
Guicai Yu ◽  
Lingwei Xu

A filter bank multicarrier (FBMC) with offset quadrature amplitude modulation (OQAM) (FBMC/OQAM) is considered to be one of the physical layer technologies in future communication systems, and it is also a wireless transmission technology that supports the applications of Internet of Things (IoT). However, efficient channel parameter estimation is one of the difficulties in realization of highly available FBMC systems. In this paper, the Bayesian compressive sensing (BCS) channel estimation approach for FBMC/OQAM systems is investigated and the performance in a multiple-input multiple-output (MIMO) scenario is also analyzed. An iterative fast Bayesian matching pursuit algorithm is proposed for high channel estimation. Bayesian channel estimation is first presented by exploring the prior statistical information of a sparse channel model. It is indicated that the BCS channel estimation scheme can effectively estimate the channel impulse response. Then, a modified FBMP algorithm is proposed by optimizing the iterative termination conditions. The simulation results indicate that the proposed method provides better mean square error (MSE) and bit error rate (BER) performance than conventional compressive sensing methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Yulin Wang ◽  
Gengxin Zhang ◽  
Zhidong Xie ◽  
Jing Hu

This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic.


2021 ◽  
Vol 38 (2) ◽  
pp. 413-420
Author(s):  
Sarala Patchala ◽  
Sailaja Maruvada

Filter Bank Multicarrier (FBMC) frameworks are a subclass of multicarrier (MC) frameworks. The essential guideline, separating spectrum into many thin sub channels, may not be new, MC frameworks have seen wide appropriation. These days, multicarrier regulation frameworks dependent on the discrete Fourier transforms are usually used to transmit over recurrence particular channels subject to forceful noise aggravations. In any case, these handsets experience the ill effects of poor sub channel spectral control, that is, the measure of inter channel impedance isn't unimportant. It very well may be indicated that the framework execution reduces when it is dependent upon an unsettling influence with a large portion of its energy focused on a narrow frequency band. This Paper aims that identify the Filter Bank Multi Carrier (FBMC) performance. The MIMO system combined with the FBMC then identifies the over Frequency Selective Channel (FSC). Here the analysis for FSC, Flat fading model FBMC and system with MMSE equalization. The Prototype filters are analyzing the system performance characteristics. The Power Spectral Density (PSD) of the MIMO FBMC system for the given spectrum. The proposed systems are best to compare all existing technique and we measure the spectral efficiency of the system.


Author(s):  
Urvashi Pal ◽  
Horace L KING

In a multipath fading channel of DVB-S2, smallscalevariations occur due to unwanted noise signal, which isdirectly related to the impulse response of a radio channel. Thevarying channel has to be estimated before decoding the signal atthe receiver for proper signal recovery. However, In the presenceof a time varying and correlated phase noise, proper estimation ofthe Channel Impulse Response (CIR) becomes difficult. Toovercome this problem, a pilot-aided joint channel estimation anddecoding method is proposed to obtain the initial estimate of thechannel. This technique is reliable and important for satellitecommunication as the Ku-band capacity is almost over crowdedand more satellite resources are needed. The results show thatIterative Channel Estimation technique results in a lower BER andimproved signal quality for DVB-S2, which fine-tunes the systemfor an efficient use of power and bandwidth of satellite resources.


Sign in / Sign up

Export Citation Format

Share Document