scholarly journals Adaptive Fuzzy Synchronization of Fractional-Order Chaotic (Hyperchaotic) Systems with Input Saturation and Unknown Parameters

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Heng Liu ◽  
Ye Chen ◽  
Guanjun Li ◽  
Wei Xiang ◽  
Guangkui Xu

We investigate the synchronization problem of fractional-order chaotic systems with input saturation and unknown external disturbance by means of adaptive fuzzy control. An adaptive controller, accompanied with fractional adaptation law, is established, fuzzy logic systems are used to approximate the unknown nonlinear functions, and the fractional Lyapunov stability theorem is used to analyze the stability. This control method can realize the synchronization of two fractional-order chaotic or hyperchaotic systems and the synchronization error tends to zero asymptotically. Finally, we show the effectiveness of the proposed method by two simulation examples.

2013 ◽  
Vol 694-697 ◽  
pp. 2185-2189
Author(s):  
Xiao Ping Zhu ◽  
Xiu Ping Wang ◽  
Chun Yu Qu ◽  
Jun You Zhao

In order to against the uncertain disturbance of AC linear servo system, an H mixed sensitivity control method based on adaptive fuzzy control was putted forward in the paper. The controller is comprised of an adaptive fuzzy controller and a H robust controller, the adaptive fuzzy controller is used to approximate this ideal control law, H robust controller is designed for attenuating the approximation errors and the influence of the external disturbance. The experimental results show that this control strategy not only has a strong robustness to uncertainties of the linear system, but also has a good tracking performance, furthermore the control greatly improves the robust tracking precision of the direct drive linear servo system.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wenqing Fu ◽  
Heng Liu

An adaptive fuzzy synchronization controller is designed for a class of fractional-order neural networks (FONNs) subject to backlash-like hysteresis input. Fuzzy logic systems are used to approximate the system uncertainties as well as the unknown terms of the backlash-like hysteresis. An adaptive fuzzy controller, which can guarantee the synchronization errors tend to an arbitrary small region, is given. The stability of the closed-loop system is rigorously analyzed based on fractional Lyapunov stability criterion. Fractional adaptation laws are established to update the fuzzy parameters. Finally, some simulation examples are provided to indicate the effectiveness and the robust of the proposed control method.


Author(s):  
Mohamed Hamdy ◽  
Sameh Abd-Elhaleem ◽  
M. A. Fkirin

This paper presents an adaptive fuzzy controller for a class of unknown nonlinear systems over network. The network-induced delays can degrade the performance of the networked control systems (NCSs) and also can destabilize the system. Moreover, the seriousness of the delay problem is aggravated when packet losses occur during a transmission of data. The proposed controller uses a filtered tracking error to cope the time-varying network-induced delays. It is also robust enough to cope some packet losses in the system. Fuzzy logic systems (FLSs) are used to approximate the unknown nonlinear functions that appear in the tracking controller. Based on Lyapunov stability theory, the constructed controller is proved to be asymptotically stable. Stability of the adaptive fuzzy controller is guaranteed in the presence of bounded external disturbance, time-varying delays, and data packet dropouts. Simulated application of the inverted pendulum tracking illustrates the effectiveness of the proposed technique with comparative results.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Jinpeng Yu ◽  
Junwei Gao ◽  
Yumei Ma ◽  
Haisheng Yu ◽  
Songfeng Pan

An adaptive fuzzy control method is developed to control chaos in the permanent magnet synchronous motor drive system via backstepping. Fuzzy logic systems are used to approximate unknown nonlinearities, and an adaptive backstepping technique is employed to construct controllers. The proposed controller can suppress the chaos of PMSM and track the reference signal successfully. The simulation results illustrate its effectiveness.


Author(s):  
Bai Zhiye ◽  
Li Shenggang ◽  
Liu Heng

This article proposes an adaptive neural output feedback control scheme in combination with state and disturbance observers for uncertain fractional-order nonlinear systems containing unknown external disturbance, input saturation and immeasurable state. The radial basis function neural network (RBFNN) approximation is used to estimate unknown nonlinear function, and a state observer as well as a fractional-order disturbance observer is developed simultaneously by using the approximation output of the RBFNN to estimate immeasurable states and unknown compounded disturbances, respectively. Then, a fractional-order auxiliary system is constructed to compensate the effects caused by the saturated input. In addition, by introducing a dynamic surface control strategy, the tedious analytic computation of time derivatives of virtual control laws in the conventional backstepping method is avoided. The proposed method guarantees that the boundness of all signals in the closed loop system and the tracking errors converge to a small neighbourhood around the origin. Finally, two examples are provided to verify the effectiveness of the proposed control method.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Baojie Zhang ◽  
Hongxing Li

Universal projective synchronization (UPS) of two chaotic systems is defined. Based on the Lyapunov stability theory, an adaptive control method is derived such that UPS of two different hyperchaotic systems with unknown parameters is realized, which is up to a scaling function matrix and three kinds of reference systems, respectively. Numerical simulations are used to verify the effectiveness of the scheme.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 104590-104602
Author(s):  
Changhui Wang ◽  
Jinwu Gao ◽  
Mei Liang ◽  
Yongsheng Chai

Sign in / Sign up

Export Citation Format

Share Document