scholarly journals Requirements Elicitation and Prototyping of a Fully Immersive Virtual Reality Gaming System for Upper Limb Stroke Rehabilitation in Saudi Arabia

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Maram AlMousa ◽  
Hend S. Al-Khalifa ◽  
Hana AlSobayel

Stroke rehabilitation plays an important role in recovering the lifestyle of stroke survivors. Although existing research proved the effectiveness and engagement of nonimmersive virtual reality- (VR-) based rehabilitation systems, limited research is available on the applicability of fully immersive VR-based rehabilitation systems. In this paper, we present the elicited requirements of a fully immersive VR-based rehabilitation system that will be designed for domestic upper limb stroke patients; we will also provide an initial conceptual prototype of the proposed system.

2022 ◽  
pp. 235-261
Author(s):  
Robert Herne ◽  
Mohd Fairuz Shiratuddin ◽  
Shri Rai ◽  
David Blacker

Stroke is a debilitating condition that impairs one's ability to live independently while also greatly decreasing one's quality of life. For these reasons, stroke rehabilitation is important. Engagement is a crucial part of rehabilitation, increasing a stroke survivor's recovery rate and the positive outcomes of their rehabilitation. For this reason, virtual reality (VR) has been widely used to gamify stroke rehabilitation to support engagement. Given that VR and the serious games that form its basis may not necessarily be engaging in themselves, ensuring that their design is engaging is important. This chapter discusses 39 principles that may be useful for engaging stroke survivors with VR-based rehabilitation post-stroke. This chapter then discusses a subset of the game design principles that are likely to engage stroke survivors with VR designed for upper limb rehabilitation post-stroke.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huihui Cai ◽  
Tao Lin ◽  
Lina Chen ◽  
Huidan Weng ◽  
Ruihan Zhu ◽  
...  

Abstract Background The high incidence of cerebral apoplexy makes it one of the most important causes of adult disability. Gait disorder is one of the hallmark symptoms in the sequelae of cerebral apoplexy. The recovery of walking ability is critical for improving patients’ quality of life. Innovative virtual reality technology has been widely used in post-stroke rehabilitation, whose effectiveness and safety have been widely verified. To date, however, there are few studies evaluating the effect of immersive virtual reality on stroke-related gait rehabilitation. This study outlines the application of immersive VR-assisted rehabilitation for gait rehabilitation of stroke patients for comparative evaluation with traditional rehabilitation. Methods The study describes a prospective, randomized controlled clinical trial. Thirty-six stroke patients will be screened and enrolled as subjects within 1 month of initial stroke and randomized into two groups. The VRT group (n = 18) will receive VR-assisted training (30 min) 5 days/week for 3 weeks. The non-VRT group (n = 18) will receive functional gait rehabilitation training (30 min) 5 days/week for 3 weeks. The primary outcomes and secondary outcomes will be conducted before intervention, 3 weeks after intervention, and 6 months after intervention. The primary outcomes will include time “up & go” test (TUGT). The secondary outcomes will include MMT muscle strength grading standard (MMT), Fugal-Meyer scale (FMA), motor function assessment scale (MAS), improved Barthel index scale (ADL), step with maximum knee angle, total support time, step frequency, step length, pace, and stride length. Discussion Virtual reality is an innovative technology with broad applications, current and prospective. Immersive VR-assisted rehabilitation in patients with vivid treatment scenarios in the form of virtual games will stimulate patients’ interest through active participation. The feedback of VR games can also provide patients with performance awareness and effect feedback, which could be incentivizing. This study may reveal an improved method of stroke rehabilitation which can be helpful for clinical decision-making and future practice. Trial registration Chinese Clinical Trial Registry ChiCTR1900025375. Registered on 25 August 2019


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1069
Author(s):  
Deyby Huamanchahua ◽  
Adriana Vargas-Martinez ◽  
Ricardo Ramirez-Mendoza

Exoskeletons are an external structural mechanism with joints and links that work in tandem with the user, which increases, reinforces, or restores human performance. Virtual Reality can be used to produce environments, in which the intensity of practice and feedback on performance can be manipulated to provide tailored motor training. Will it be possible to combine both technologies and have them synchronized to reach better performance? This paper consists of the kinematics analysis for the position and orientation synchronization between an n DoF upper-limb exoskeleton pose and a projected object in an immersive virtual reality environment using a VR headset. To achieve this goal, the exoskeletal mechanism is analyzed using Euler angles and the Pieper technique to obtain the equations that lead to its orientation, forward, and inverse kinematic models. This paper extends the author’s previous work by using an early stage upper-limb exoskeleton prototype for the synchronization process.


2022 ◽  
Vol 12 ◽  
Author(s):  
Contrada Marianna ◽  
Arcuri Francesco ◽  
Tonin Paolo ◽  
Pignolo Loris ◽  
Mazza Tiziana ◽  
...  

Introduction: Telerehabilitation (TR) is defined as a model of home service for motor and cognitive rehabilitation, ensuring continuity of care over time. TR can replace the traditional face-to-face approach as an alternative method of delivering conventional rehabilitation and applies to situations where the patient is unable to reach rehabilitation facilities or for low-income countries where outcomes are particularly poor. For this reason, in this study, we sought to demonstrate the feasibility and utility of a well-known TR intervention on post-stroke patients living in one of the poorest indebted regions of Italy, where the delivery of rehabilitation services is inconsistent and not uniform.Materials and Methods: Nineteen patients (13 male/6 female; mean age: 61.1 ± 8.3 years) with a diagnosis of first-ever ischemic (n = 14) or hemorrhagic stroke (n = 5), who had been admitted to the intensive rehabilitation unit (IRU) of the Institute S. Anna (Crotone, Italy), were consecutively enrolled to participate in this study. After the discharge, they continued the motor treatment remotely by means of a home-rehabilitation system. The entire TR intervention was performed (online and offline) using the Virtual Reality Rehabilitation System (VRRS) (Khymeia, Italy). All patients received intensive TR five times a week for 12 consecutive weeks (60 sessions, each session lasting about 1h).Results: We found a significant motor recovery after TR protocol as measured by the Barthel Index (BI); Fugl-Meyer motor score (FM) and Motricity Index (MI) of the hemiplegic upper limbs.Conclusions: This was the first demonstration that a well-defined virtual reality TR tool promotes motor and functional recovery in post-stroke patients living in a low-income Italian region, such as Calabria, characterized by a paucity of specialist rehabilitation services.


Sign in / Sign up

Export Citation Format

Share Document