scholarly journals DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Benilde García-de Teresa ◽  
Mariana Hernández-Gómez ◽  
Sara Frías

DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jusciele Brogin Moreli ◽  
Janine Hertzog Santos ◽  
Clarissa Ribeiro Rocha ◽  
Débora Cristina Damasceno ◽  
Glilciane Morceli ◽  
...  

The increased production of reactive oxygen species (ROS) plays a key role in pathogenesis of diabetic complications. ROS are generated by exogenous and endogenous factors such as during hyperglycemia. When ROS production exceeds the detoxification and scavenging capacity of the cell, oxidative stress ensues. Oxidative stress induces DNA damage and when DNA damage exceeds the cellular capacity to repair it, the accumulation of errors can overwhelm the cell resulting in cell death or fixation of genome mutations that can be transmitted to future cell generations. These mutations can lead to and/or play a role in cancer development. This review aims at (i) understanding the types and consequences of DNA damage during hyperglycemic pregnancy; (ii) identifying the biological role of DNA repair during pregnancy, and (iii) proposing clinical interventions to maintain genome integrity. While hyperglycemia can damage the maternal genetic material, the impact of hyperglycemia on fetal cells is still unclear. DNA repair mechanisms may be important to prevent the deleterious effects of hyperglycemia both in mother and in fetus DNA and, as such, prevent the development of diseases in adulthood. Hence, in clinical practice, maternal glycemic control may represent an important point of intervention to prevent the deleterious effects of maternal hyperglycemia to DNA.


2016 ◽  
pp. 43-47
Author(s):  
O.V. Basystyi ◽  

The data of domestic and foreign literature on etiology, pathogenesis and intrauterine growth retardation diagnosis are presented in the paper. It highlights pathogenetic role of nitric oxide deficiency in case of obstetric complications and intrauterine growth retardation. Key words: intrauterine growth retardation (IUGR), system L-arginin–NO, obstetric complications.


2014 ◽  
Vol 99 (Suppl 2) ◽  
pp. A483.1-A483
Author(s):  
P Orujova ◽  
S Huseynova ◽  
S Hasanov ◽  
S Alasgarova ◽  
S Mukhtarova

Sign in / Sign up

Export Citation Format

Share Document