scholarly journals Relativistic Localizing Processes Bespeak an Inevitable Projective Geometry of Spacetime

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Jacques L. Rubin

Surprisingly, the issue of events localization in spacetime is poorly understood and a fortiori realized even in the context of Einstein’s relativity. Accordingly, a comparison between observational data and theoretical expectations might then be strongly compromised. In the present paper, we give the principles of relativistic localizing systems so as to bypass this issue. Such systems will allow locating users endowed with receivers and, in addition, localizing any spacetime event. These localizing systems are made up of relativistic autolocating positioning subsystems supplemented by an extra satellite. They indicate that spacetime must be supplied everywhere with an unexpected local four-dimensional projective structure besides the well-known three-dimensional relativistic projective one. As a result, the spacetime manifold can be seen as a generalized Cartan space modeled on a four-dimensional real projective space, that is, a spacetime with both a local four-dimensional projective structure and a compatible (pseudo-)Riemannian structure. Localization protocols are presented in detail, while possible applications to astrophysics are also considered.

1952 ◽  
Vol 48 (3) ◽  
pp. 383-391
Author(s):  
T. G. Room

This paper falls into three sections: (1) a system of birational transformations of the projective plane determined by plane cubic curves of a pencil (with nine associated base points), (2) some one-many transformations determined by the pencil, and (3) a system of birational transformations of three-dimensional projective space determined by the elliptic quartic curves through eight associated points (base of a net of quadric surfaces).


2020 ◽  
Vol 55 (2) ◽  
pp. 41-60
Author(s):  
Jabir Shabbir Malik

AbstractIn addition to Global Positioning System (GPS) constellation, the number of Global Navigation Satellite System (GLONASS) satellites is increasing; it is now possible to evaluate and analyze the position accuracy with both the GPS and GLONASS constellation. In this article, statistical analysis of static precise point positioning (PPP) using GPS-only, GLONASS-only, and combined GPS/GLONASS modes is evaluated. Observational data of 10 whole days from 10 International GNSS Service (IGS) stations are used for analysis. Position accuracy in east, north, up components, and carrier phase/code residuals is analyzed. Multi-GNSS PPP open-source package is used for the PPP performance analysis. The analysis also provides the GNSS researchers the understanding of the observational data processing algorithm. Calculation statistics reveal that standard deviation (STD) of horizontal component is 3.83, 13.80, and 3.33 cm for GPS-only, GLONASS-only, and combined GPS/GLONASS PPP solutions, respectively. Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPS-only and GLONASS-only PPP solutions. The results of the calculation show that combined GPS/GLONASS PPP improves, on an average, horizontal accuracy by 12.11% and 60.33% and 3D positioning accuracy by 10.39% and 66.78% compared with GPS-only and GLONASS-only solutions, respectively. In addition, the results also demonstrate that GPS-only solutions show an improvement of 54.23% and 62.54% compared with GLONASS-only PPP mode in horizontal and 3D components, respectively. Moreover, residuals of GLONASS ionosphere-free code observations are larger than the GPS code residuals. However, phase residuals of GPS and GLONASS phase observations are of the same magnitude.


1971 ◽  
Vol 23 (6) ◽  
pp. 1102-1115 ◽  
Author(s):  
Richard L. W. Brown

In 1944 Whitney proved that any differentiable n-manifold (n ≧ 2) can be (differentiably) immersed in R2n–1[15] and embedded in R2n [14]. Whitney's results are best possible when n = 2r. (One uses a simple argument involving the dual Stiefel-Whitney classes of real projective space Pn. See [9, pp. 14, 15].) However, there is a widely known conjecture that any R-manifold (n ≧ 2) immerses in R2n–α(n) and embeds in R2n–α(n)+1. Here, α(n) denotes the number of ones in the binary expansion of n. We prove (Theorem 5.1) that every compact manifold is cobordant to a manifold that immerses in (2n – α(n))-space and embeds in (2n – α(n) + 1)-space. (See § 1 for the definition of cobordant manifolds.) It is well known that if the conjecture were true it would be the best possible result.


2014 ◽  
Vol 25 (04) ◽  
pp. 1450038 ◽  
Author(s):  
Christian Okonek ◽  
Andrei Teleman

The main result is a wall-crossing formula for central projections defined on submanifolds of a Real projective space. Our formula gives the jump of the degree of such a projection when the center of the projection varies. The fact that the degree depends on the projection is a new phenomenon, specific to Real algebraic geometry. We illustrate this phenomenon in many interesting situations. The crucial assumption on the class of maps we consider is relative orientability, a condition which allows us to define a ℤ-valued degree map in a coherent way. We end the article with several examples, e.g. the pole placement map associated with a quotient, the Wronski map, and a new version of the Real subspace problem.


Sign in / Sign up

Export Citation Format

Share Document