scholarly journals A New Model-Free Trajectory Tracking Control for Robot Manipulators

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yaoyao Wang ◽  
Kangwu Zhu ◽  
Bai Chen ◽  
Hongtao Wu

In this paper, we propose a novel model-free trajectory tracking control for robot manipulators under complex disturbances. The proposed method utilizes time delay control (TDC) as its control framework to ensure a model-free scheme and uses adaptive nonsingular terminal sliding mode (ANTSM) to obtain high control accuracy and fast dynamic response under lumped disturbance. Thanks to the application of adaptive law, the proposed method can ensure high tracking accuracy and effective suppression of noise effect simultaneously. Stability of the closed-loop control system is proved using Lyapunov method. Finally, the effectiveness and advantages of the newly proposed TDC scheme with ANTSM dynamics are verified through several comparative simulations.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lu Wang ◽  
Jianhua Cheng

In this paper, we propose a finite-time sliding mode trajectory tracking control methodology for the vertical takeoff and landing unmanned aerial vehicle (VTOL UAV). Firstly, a system error model of trajectory tracking task is established based on Rodrigues parameters by considering both external and internal uncertainties. According to the cascade property, the system model is divided into translational and rotational subsystems, and a hierarchical control structure is hence proposed. Then, a finite-time generalized nonlinear disturbance observer (NDOB) is proposed, based on which the finite-time convergence result of equivalent disturbance estimation can be acquired. Finally, by introducing a tan-type compensator into the traditional terminal sliding mode control (SMC), the finite-time convergence result of the closed-loop control system is acquired based on Lyapunov stability analysis. Simulation results show the effectiveness of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document