scholarly journals Foxc2 and BMP2 Induce Osteogenic/Odontogenic Differentiation and Mineralization of Human Stem Cells from Apical Papilla

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wen Zhang ◽  
Xiaolei Zhang ◽  
Junyuan Li ◽  
Jianmao Zheng ◽  
Xiaoli Hu ◽  
...  

As a transcription factor regulated by bone morphogenetic protein 2 (BMP2), Forkhead c2 (Foxc2) plays a pivot role in osteogenesis/odontogenesis. However, the role of Foxc2 and BMP2 in regulating osteo-/odontogenic differentiation and mineralization of stem cells from apical papilla (SCAP) is still uncertain. In this research, overexpression of Foxc2 gene significantly improved the proliferation of SCAP four days and eight days after transfection, but overexpression of both Foxc2 and BMP2 genes significantly inhibited the proliferation of SCAP eight days after transfection. RT-qPCR and western blot results indicated that SCAP-Foxc2-BMP2 significantly upregulated osteo-/odontogenic genes and proteins at most of the time points in SCAP after transfection. Moreover, SCAP-Foxc2-BMP2 formed notably more alkaline phosphatase-positive and alizarin red-positive mineralized nodules than other three group cells sixteen days after transfection. In conclusion, our findings revealed that Foxc2 and BMP2 synergistically promoted osteo-/odontogenic differentiation and mineralization of SCAP in vitro.

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 974 ◽  
Author(s):  
José Luis Sanz ◽  
Leopoldo Forner ◽  
Alicia Almudéver ◽  
Julia Guerrero-Gironés ◽  
Carmen Llena

Blood clot formation in the apical third of the root canal system has been shown to promote further root development and reinforcement of dentinal walls by the deposition of mineralized tissue, resulting in an advancement from traditional apexification procedures to a regenerative endodontic treatment (RET) for non-vital immature permanent teeth. Silicate-based hydraulic biomaterials, categorized as bioactive endodontic cements, emerged as bright candidates for their use in RET as coronal barriers, sealing the previously induced blood clot scaffold. Human stem cells from the apical papilla (hSCAPs) surviving the infection may induce or at least be partially responsible for the regeneration or repair shown in RET. The aim of this study is to present a qualitative synthesis of available literature consisting of in vitro assays which analyzed the viability and stimulation of hSCAPs induced by silicate-based hydraulic biomaterials. A systematic electronic search was carried out in Medline, Scopus, Embase, Web of Science, Cochrane and SciELO databases, followed by a study selection, data extraction, and quality assessment following the PRISMA protocol. In vitro studies assessing the viability, proliferation, and/or differentiation of hSCAPs as well as their mineralization potential and/or osteogenic, odontogenic, cementogenic and/or angiogenic marker expression in contact with commercially available silicate-based materials were included in the present review. The search identified 73 preliminary references, of which 10 resulted to be eligible for qualitative synthesis. The modal materials studied were ProRoot MTA and Biodentine. Both bioceramic materials showed significant positive results when compared to a control for hSCAP cell viability, migration, and proliferation assays; a significant up-regulation of hSCAP odontogenic/osteogenic marker (ALP, DSPP, BSP, Runx2, OCN, OSX), angiogenic growth factor (VEGFA, FIGF) and pro-inflammatory cytokine (IL-1α, IL-1β, IL-6, TNF-α) expression; and a significant increase in hSCAP mineralized nodule formation assessed by Alizarin Red staining. Commercially available silicate-based materials considered in the present review can potentially induce mineralization and odontogenic/osteogenic differentiation of hSCAPs, thus prompting their use in regenerative endodontic procedures.


2014 ◽  
Vol 34 (4) ◽  
pp. 1004-1012 ◽  
Author(s):  
WEN ZHANG ◽  
XIAOLEI ZHANG ◽  
JUNQI LING ◽  
WEI LIU ◽  
XINCHUN ZHANG ◽  
...  

2021 ◽  
Author(s):  
Na Li ◽  
Yan Chen ◽  
Ming Yan ◽  
Yanqiu Wang ◽  
Jintao Wu ◽  
...  

Abstract BackgroundThe osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs) contributes to the restoration and regeneration of dental tissues. Previous study indicated that IL-37 has often been identified as an anti-inflammatory factor that affects other pro-inflammatory signals. It is known to be a factor capable of inducing in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). The aims of this study were to explore the effects of IL-37 on the differentiation of DPSCs.MethodsDPSCs were cultured in growth medium with different concentration of IL-37, ALP activity was done to detect the optimal concentration for the following experiments. CCK-8 were conducted to assess the effect of IL-37 on proliferation of DPSCs. To assess differentiation, alkaline phosphatase activity, ALP staining, alizarin red S staining and real‐time RT‐PCR of DSPP, Runx2, ALP, and OSX were measured. Western blot was conducted to examine the levels of autophagy related markers (Beclin1, P62, LC3). ResultsCells cultured with 1 ng/mL IL-37 owned the highest ALP activity. IL-37 enhanced the osteogenic and odontogenic differentiation of DPSCs following upregulated the expression of Beclin1, downregulated the expression of P62, and reduced the ratio of LC3II/I, whereas depletion of autophagy suppressed DPSCs osteogenic and odontogenic differentiation. ConclusionIL-37 increased osteogenic and odontogenic differentiation via autophagy.


Author(s):  
Kajohnkiart Janebodin ◽  
Rakchanok Chavanachat ◽  
Aislinn Hays ◽  
Morayma Reyes Gil

Dental pulp stem cells (DPSCs) are a source of postnatal stem cells essential for maintenance and regeneration of dentin and pulp tissues. Previous in vivo transplantation studies have shown that DPSCs are able to give rise to odontoblast-like cells, form dentin/pulp-like structures, and induce blood vessel formation. Importantly, dentin formation is closely associated to blood vessels. We have previously demonstrated that DPSC-induced angiogenesis is VEGFR-2-dependent. VEGFR-2 may play an important role in odontoblast differentiation of DPSCs, tooth formation and regeneration. Nevertheless, the role of VEGFR-2 signaling in odontoblast differentiation of DPSCs is still not well understood. Thus, in this study we aimed to determine the role of VEGFR-2 in odontoblast differentiation of DPSCs by knocking down the expression of VEGFR-2 in DPSCs and studying their odontoblast differentiation capacity in vitro and in vivo. Isolation and characterization of murine DPSCs was performed as previously described. DPSCs were induced by VEGFR-2 shRNA viral vectors transfection (MOI = 10:1) to silence the expression of VEGFR-2. The GFP+ expression in CopGFP DPSCs was used as a surrogate to measure the efficiency of transfection and verification that the viral vector does not affect the expression of VEGFR-2. The efficiency of viral transfection was shown by significant reduction in the levels of VEGFR-2 based on the Q-RT-PCR and immunofluorescence in VEGFR-2 knockdown DPSCs, compared to normal DPSCs. VEGFR-2 shRNA DPSCs expressed not only very low level of VEGFR-2, but also that of its ligand, VEGF-A, compared to CopGFP DPSCs in both transcriptional and translational levels. In vitro differentiation of DPSCs in osteo-odontogenic media supplemented with BMP-2 (100 ng/ml) for 21 days demonstrated that CopGFP DPSCs, but not VEGFR-2 shRNA DPSCs, were positive for alkaline phosphatase (ALP) staining and formed mineralized nodules demonstrated by positive Alizarin Red S staining. The expression levels of dentin matrix proteins, dentin matrix protein-1 (Dmp1), dentin sialoprotein (Dspp), and bone sialoprotein (Bsp), were also up-regulated in differentiated CopGFP DPSCs, compared to those in VEGFR-2 shRNA DPSCs, suggesting an impairment of odontoblast differentiation in VEGFR-2 shRNA DPSCs. In vivo subcutaneous transplantation of DPSCs with hydroxyapatite (HAp/TCP) for 5 weeks demonstrated that CopGFP DPSCs were able to differentiate into elongated and polarized odontoblast-like cells forming loose connective tissue resembling pulp-like structures with abundant blood vessels, as demonstrated by H&E, Alizarin Red S, and dentin matrix staining. On the other hand, in VEGFR-2 shRNA DPSC transplants, odontoblast-like cells were not observed. Collagen fibers were seen in replacement of dentin/pulp-like structures. These results indicate that VEGFR-2 may play an important role in dentin regeneration and highlight the potential of VEGFR-2 modulation to enhance dentin regeneration and tissue engineering as a promising clinical application.


Sign in / Sign up

Export Citation Format

Share Document