scholarly journals The Half-Logistic Lomax Distribution for Lifetime Modeling

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Masood Anwar ◽  
Jawaria Zahoor

We introduce a new two-parameter lifetime distribution called the half-logistic Lomax (HLL) distribution. The proposed distribution is obtained by compounding half-logistic and Lomax distributions. We derive some mathematical properties of the proposed distribution such as the survival and hazard rate function, quantile function, mode, median, moments and moment generating functions, mean deviations from mean and median, mean residual life function, order statistics, and entropies. The estimation of parameters is performed by maximum likelihood and the formulas for the elements of the Fisher information matrix are provided. A simulation study is run to assess the performance of maximum-likelihood estimators (MLEs). The flexibility and potentiality of the proposed model are illustrated by means of real and simulated data sets.

Author(s):  
C. Satheesh Kumar ◽  
Subha R. Nair

AbstractIn this paper we consider a generalization of a log-transformed version of the inverse Weibull distribution. Several theoretical properties of the distribution are studied in detail including expressions for its probability density function, reliability function, hazard rate function, quantile function, characteristic function, raw moments, percentile measures, entropy measures, median, mode etc. Certain structural properties of the distribution along with expressions for reliability measures as well as the distribution and moments of order statistics are obtained. Also we discuss the maximum likelihood estimation of the parameters of the proposed distribution and illustrate the usefulness of the model through real life examples. In addition, the asymptotic behaviour of the maximum likelihood estimators are examined with the help of simulated data sets.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohamed Kayid ◽  
Rayof Alskhabrah ◽  
Arwa M. Alshangiti

A new scale-invariant extension of the Lindley distribution and its power generalization has been introduced. The moments and the moment-generating functions of the proposed models have closed forms. The failure rate, the mean residual life, and the α -quantile residual life functions have been explored. The failure rate function of these models accommodates increasing, bathtub-shaped, and increasing then bathtub-shaped forms. The parameters of the models have been estimated by the maximum likelihood method for the complete and right-censored data. In a simulation study, the efficiency and consistency of the maximum likelihood estimator have been investigated. Then, the proposed models were fitted to four data sets to show their flexibility and applicability.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1144
Author(s):  
Zakeia A. Al-Saiary ◽  
Rana A. Bakoban

In this article, a new three parameters lifetime model called the Topp-Leone Generalized Inverted Exponential (TLGIE) Distribution is introduced. Various properties of the model are derived, including moments, quantile function, survival function, hazard rate function, mean deviation and mode. The method of maximum likelihood is used to estimate the unknown parameters. The properties of the maximum likelihood estimators using Fisher information matrix are studied. Three real data sets are applied for illustrative purpose of this study.


2017 ◽  
Vol 46 (1) ◽  
pp. 41-63 ◽  
Author(s):  
M.E. Mead ◽  
Ahmed Z. Afify ◽  
G.G. Hamedani ◽  
Indranil Ghosh

We define and study a new generalization of the Fréchet distribution called the beta exponential Fréchet distribution. The new model includes thirty two special models. Some of its mathematical properties, including explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean residual life, mean inactivity time, order statistics and entropies are derived. The method of maximum likelihood is proposed to estimate the model parameters. A small simulation study is alsoreported. Two real data sets are applied to illustrate the flexibility of the proposed model compared with some nested and non-nested models.


2021 ◽  
Vol 50 (5) ◽  
pp. 1-22
Author(s):  
Muhammad Hussain Tahir ◽  
Gauss M. Cordeiro ◽  
Muhammad Mansoor ◽  
Muhammad Zubair ◽  
Ayman Alzaatreh

We introduce a new model named the Kumaraswamy Pareto IV distribution which extends the Pareto and Pareto IV distributions. The density function is very flexible and can be left-skewed, right-skewed and symmetrical shapes. It hasincreasing, decreasing, upside-down bathtub, bathtub, J and reversed-J shaped hazard rate shapes. Various structural properties are derived including explicit expressions for the quantile function, ordinary and incomplete moments,Bonferroni and Lorenz curves, mean deviations, mean residual life, mean waiting time, probability weighted moments and generating function. We provide the density function of the order statistics and their moments. The Renyi and q entropies are also obtained. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The usefulness of the new model is illustrated by means of three real-life data sets. In fact, our proposed model provides a better fit to these data than the gamma-Pareto IV, gamma-Pareto, beta-Pareto,exponentiated Pareto and Pareto IV models.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 510
Author(s):  
Bo Peng ◽  
Zhengqiu Xu ◽  
Min Wang

We introduce a new three-parameter lifetime distribution, the exponentiated Lindley geometric distribution, which exhibits increasing, decreasing, unimodal, and bathtub shaped hazard rates. We provide statistical properties of the new distribution, including shape of the probability density function, hazard rate function, quantile function, order statistics, moments, residual life function, mean deviations, Bonferroni and Lorenz curves, and entropies. We use maximum likelihood estimation of the unknown parameters, and an Expectation-Maximization algorithm is also developed to find the maximum likelihood estimates. The Fisher information matrix is provided to construct the asymptotic confidence intervals. Finally, two real-data examples are analyzed for illustrative purposes.


Author(s):  
Zafar Iqbal ◽  
Muhammad Rashad ◽  
Abdur Razaq ◽  
Muhammad Salman ◽  
Afsheen Javed

We introduce a new class of lifetime models called the transmuted powered moment exponential distribution. More specifically, the transmuted powered moment exponential distribution covers several new distributions. Survival analysis including survival function, hazard rate function and other related measures are computed. Analytical expressions for various mathematical properties of TPMED including rth moment, quantile function, inequality measures, and parameters are estimated by using maximum likelihood estimation and order statistics are also derived. A simulation study of the proposed distribution is performed. It is discovered that the Maximum Likelihood Estimators are consistent since the bias and Mean Square Error approach to zero when the sample size increases. The usefulness of the model associated with this distribution is illustrated by two real data sets and the new model provides a better fit than the models provided in literature.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Najma Salahuddin ◽  
Alamgir Khalil ◽  
Wali Khan Mashwani ◽  
Habib Shah ◽  
Pijitra Jomsri ◽  
...  

In this paper, a new method is proposed to expand the family of lifetime distributions. The suggested method is named as Khalil new generalized family (KNGF) of distributions. A special submodel, termed as Khalil new generalized Pareto (KNGP) distribution, is investigated from the family with one shape and two scale parameters. A number of mathematical properties of the submodel have been derived including moments, moment-generating function, quantile function, entropy measures, order statistics, mean residual life function, and maximum likelihood method for the estimation of parameters. The proposed distribution is very flexible in its nature covering several hazard rate shapes (symmetric and asymmetric). To examine the performance of the maximum likelihood estimates in terms of their bias and mean squared error using simulated samples, a simulation study is carried out. Furthermore, parametric estimation of the model is conferred using the method of maximum likelihood, and the practicality of the proposed family is illustrated with the help of real datasets. Finally, we hope that the new suggested flexible KNGF may produce useful models for fitting monotonic and nonmonotonic data related to survival analysis and reliability analysis.


Author(s):  
Umar Yusuf Madaki ◽  
Mohd Rizam Abu Bakar ◽  
Laba Handique

We proposed a so-called Beta Kumaraswamy Burr Type X distribution which gives the extension of the Kumaraswamy-G class of family distribution. Some properties of this proposed model were provided, like: the expansion of densities and quantile function. We considered the Bayes and maximum likelihood methods to estimate the parameters and also simulate the model parameters to validate the methods based on different set of true values. Some real data sets were employed to show the usefulness and flexibility of the model which serves as generalization to many sub-models in the field of engineering, medical, survival and reliability analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Alamgir Khalil ◽  
Abdullah Ali H. Ahmadini ◽  
Muhammad Ali ◽  
Wali Khan Mashwani ◽  
Shokrya S. Alshqaq ◽  
...  

In this paper, a new approach for deriving continuous probability distributions is developed by incorporating an extra parameter to the existing distributions. Frechet distribution is used as a submodel for an illustration to have a new continuous probability model, termed as modified Frechet (MF) distribution. Several important statistical properties such as moments, order statistics, quantile function, stress-strength parameter, mean residual life function, and mode have been derived for the proposed distribution. In order to estimate the parameters of MF distribution, the maximum likelihood estimation (MLE) method is used. To evaluate the performance of the proposed model, two real datasets are considered. Simulation studies have been carried out to investigate the performance of the parameters’ estimates. The results based on the real datasets and simulation studies provide evidence of better performance of the suggested distribution.


Sign in / Sign up

Export Citation Format

Share Document