scholarly journals Seismic Protection of Cabinet Stored Cultural Relics with Silicone Dampers

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Xiaoqing Ning ◽  
Junwu Dai ◽  
Wen Bai ◽  
Yongqiang Yang ◽  
Lulu Zhang

Cultural relics are precious properties of all humankind, the damage of which is nonresilient. In previous earthquakes, stored cultural relics have shown poor seismic performance, so effective seismic methods are urgently needed. However, due to various restrictions, traditional damping methods are not suitable for the cultural relics stored in the Palace Museum. An efficient damping method, composed of silicone damper and connecting elements, is proposed to protect these stored cultural relics. This novel damping device is very convenient to install and no change or move for the original structures is needed. It is suitable for various kinds of new and existing relic cabinets. In order to validate the effectiveness of this novel damping method, both numerical simulation and shaking table tests are carried out. Results show that this method can effectively enhance the seismic performance of relic cabinet itself and the internal cultural relics. Relic cabinets with damping devices deform significantly less than noncontrol cabinets while the inside relics also have less sliding or overturning. Overall, a damping method, designed for seismic protection of cabinet stored cultural relics, is proposed and its effectiveness has been successfully demonstrated.

Author(s):  
Yen-Po Wang ◽  
Di-Hung Chen ◽  
Chien-Liang Lee

An innovative displacement-dependent metallic yielding damper designed to deform inelastically under in-plane flexural bending for seismic protection of building structures is proposed. The in-plane flexural damper that originated from a portal frame is modified by replacing the beam with a circular arch so that the effect of stress concentration can be minimized. Component tests of the in-plane dampers were conducted and compared with analytical results. Hysteresis of the component test indicates a consistent energy-dissipative characteristic of the damper. Moreover, seismic performance of the proposed damper via a series of shaking table tests was carried out. Excellent seismic performance of the proposed in-plane arched damper was observed. The acceleration responses in both peak and root-mean-squares of all floors are significantly reduced, and were greater in extent compared to the earthquake intensity increases.


2012 ◽  
Vol 256-259 ◽  
pp. 372-376 ◽  
Author(s):  
Jing Bo Liu ◽  
Dong Dong Zhao ◽  
Wen Hui Wang ◽  
Xiang Qing Liu

Two geotechnical centrifuge model tests of a soil-structure system with different burial depths are performed to investigate the interaction between soil and structure. The tests are performed at 50 gravitational centrifuge accelerations and the input motion is Kobe wave. This paper focuses on the accelerations and displacements in the soil-structures system. The peak accelerations and displacements along the axis of the structure and along the vertical line 17cm away from the axis are presented. The acceleration and displacement response due to the interaction between soil and structure are studied.


2021 ◽  
Vol 1 (2) ◽  

The need to satisfy high seismic performance of structures and to comply with the latest worldwide policies of environmental sustainability is leading engineers and researchers to higher interest in timber buildings. A post-tensioned timber frame specimen was tested at the structural laboratory of the University of Basilicata in Italy, in three different configurations: i) without dissipation (post-tensioning only-F configuration); ii) with dissipative angles (DF- dissipative rocking configuration) and iii) with dissipative bracing systems (BF - braced frame configuration). The shaking table tests were performed considering a set of spectra-compatible seismic inputs at different seismic intensities. This paper describes the experimental estimation of energy dissipated by multistorey post-tensioned timber prototype frame with different anti-seismic hysteretic dissipative devices used in the DF and BF testing configurations. The main experimental seismic key parameters have also been investigated in all testing configurations.


2017 ◽  
Vol 15 (12) ◽  
pp. 5481-5510 ◽  
Author(s):  
Hongmei Gao ◽  
Ying Hu ◽  
Zhihua Wang ◽  
Chao Wang ◽  
Guoxing Chen

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haibo Wang ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Zhubing Zhu ◽  
Shujun Zhang

Pillar electrical equipment is an important part of substations. The application of composite materials in pillar equipment can facilitate the improvement of the seismic performance of electrical equipment. In this paper, the test of elastic modulus and bending rigidity was conducted for individual composite elements in insulators and arresters, and the calculation formula for bending rigidity at the composite flange cementing connections was put forward. The numerical simulation model for the earthquake simulation shaking table test of ±1,100 kV composite pillar insulators was established, in which the bending rigidity value for the flange cementing part was obtained by the test or calculation formula. The numerical simulation results were compared with the earthquake simulation shaking table test results, the dynamic characteristics and seismic response of the model were compared, respectively, the validity of the proposed calculation formula for flange bending rigidity of composite cementing parts was verified, and a convenient and effective means was provided for calculating the seismic performance of composite electrical equipment.


Sign in / Sign up

Export Citation Format

Share Document