centrifuge model tests
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 62)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung-Won Yun ◽  
Jin-Tae Han

AbstractThe effects of earthquakes on pile-supported wharves include damage to piles by inertial forces acting on the superstructure, and damage caused by horizontal displacement of retaining walls. Piles can also be damaged through kinematic forces generated by slope failure. Such forces are significant but it is difficult to clearly explain pile damage during slope failure since the inertial force of superstructure and the kinematic force by slope failure can occur simultaneously during an earthquake. In this study, dynamic centrifuge model tests were performed to evaluate the effect of the kinematic force of the ground due to slope failure during earthquake on the behavior of a pile-supported wharf structure. Experimental results indicate that the slope failure in the inclined-ground model caused the deck plate acceleration and pile moment to be up to 24% and 31% respectively greater than those in the horizontal-ground model due to the kinematic force of the ground.


Landslides ◽  
2021 ◽  
Author(s):  
Jiawei Xu ◽  
Kyohei Ueda ◽  
Ryosuke Uzuoka

AbstractCentrifuge model tests on slopes subject to shaking and rainfall have been performed to examine the response of slopes with shaking-induced cracks to subsequent rainfall and evaluate the corresponding landslide-triggering mechanisms. The failure pattern of the slope subject to shaking and then rainfall was found different from that of the slope subject to only rainfall. When shaking caused cracks on the slope shoulder and rupture line below, the mobilized soil slid along the slip surface that extended to the rupture line, the main crack became the crown of the undisturbed ground once the slope was subject to a subsequent rain event, and the progression of the landslide was related to the rainfall intensity. During the landslide caused by light rainfall, the main scarp kept exposing itself in the vertically downward direction while the ground behind the main crack in the crack-containing slope remained undisturbed. The detrimental effect of cracks on soil displacement was more evident when the slope was exposed to heavy post-shaking rainfall, resulting in a rapid and massive landslide. Additionally, the volume of displaced material of the landslide, the main scarp area on the upper edge, and the zone of accumulation were larger in the crack-containing slope subject to heavy rainfall, in comparison with those in the crack-free slope. The deformation pattern of slopes with shaking-induced cracks during rainfall was closely related to rainfall intensity and the factor of safety provided a preliminary estimation of slope stability during rainfall. Moreover, even when subjected to the same rainfall, the slopes with antecedent shaking-induced cracks displayed different levels of deformation. The slope that experienced larger shaking had greater deformation under the following rainfall, and the shaking-induced slope deformation also controlled the slip surface location. Finally, the velocity of rainfall-induced landslide could be greatly influenced by the prior shaking event alone. Despite being under light rainfall, the slope that has encountered intense previous shaking exhibited an instant landslide.


2021 ◽  
Vol 11 (19) ◽  
pp. 9059
Author(s):  
Hui Qi ◽  
Wenjie Cui ◽  
Huaijian Li ◽  
Junwei Cheng ◽  
Lingdi Kong ◽  
...  

This paper presents theoretical methods for the undrained stability analysis of shallow tunnels/sinkholes in clay based on the cavity contraction theory, with some assumptions and simplifications. To examine the accuracy and reliability of the new methods, a database was assembled, which consists of stability numbers of tunnel/sinkholes in clays from 22 centrifuge model tests, 10 field tests, and 62 FELA results. It is shown that the proposed methods give an average of 2.5% overestimation for the stability numbers from model tests and is in a good agreement with the FELA results. The cavity contraction theory-based methods are then discussed, which could provide useful guidance for designers to roughly assess shallow tunnel/sinkhole stability in clays.


Sign in / Sign up

Export Citation Format

Share Document