scholarly journals Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qinghua Huang ◽  
Fan Zhang ◽  
Xuelong Li

The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


2019 ◽  
Vol 9 (4) ◽  
pp. 186-193
Author(s):  
Lei Xu ◽  
Junling Gao ◽  
Quan Wang ◽  
Jichao Yin ◽  
Pengfei Yu ◽  
...  

Background: Computer-aided diagnosis (CAD) systems are being applied to the ultrasonographic diagnosis of malignant thyroid nodules, but it remains controversial whether the systems add any accuracy for radiologists. Objective: To determine the accuracy of CAD systems in diagnosing malignant thyroid nodules. Methods: PubMed, EMBASE, and the Cochrane Library were searched for studies on the diagnostic performance of CAD systems. The diagnostic performance was assessed by pooled sensitivity and specificity, and their accuracy was compared with that of radiologists. The present systematic review was registered in PROSPERO (CRD42019134460). Results: Nineteen studies with 4,781 thyroid nodules were included. Both the classic machine learning- and the deep learning-based CAD system had good performance in diagnosing malignant thyroid nodules (classic machine learning: sensitivity 0.86 [95% CI 0.79–0.92], specificity 0.85 [95% CI 0.77–0.91], diagnostic odds ratio (DOR) 37.41 [95% CI 24.91–56.20]; deep learning: sensitivity 0.89 [95% CI 0.81–0.93], specificity 0.84 [95% CI 0.75–0.90], DOR 40.87 [95% CI 18.13–92.13]). The diagnostic performance of the deep learning-based CAD system was comparable to that of the radiologists (sensitivity 0.87 [95% CI 0.78–0.93] vs. 0.87 [95% CI 0.85–0.89], specificity 0.85 [95% CI 0.76–0.91] vs. 0.87 [95% CI 0.81–0.91], DOR 40.12 [95% CI 15.58–103.33] vs. DOR 44.88 [95% CI 30.71–65.57]). Conclusions: The CAD systems demonstrated good performance in diagnosing malignant thyroid nodules. However, experienced radiologists may still have an advantage over CAD systems during real-time diagnosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qingling Li ◽  
Yanhua Zhu ◽  
Minglin Chen ◽  
Ruomi Guo ◽  
Qingyong Hu ◽  
...  

Background: It is often difficult to diagnose pituitary microadenoma (PM) by MRI alone, due to its relatively small size, variable anatomical structure, complex clinical symptoms, and signs among individuals. We develop and validate a deep learning -based system to diagnose PM from MRI.Methods: A total of 11,935 infertility participants were initially recruited for this project. After applying the exclusion criteria, 1,520 participants (556 PM patients and 964 controls subjects) were included for further stratified into 3 non-overlapping cohorts. The data used for the training set were derived from a retrospective study, and in the validation dataset, prospective temporal and geographical validation set were adopted. A total of 780 participants were used for training, 195 participants for testing, and 545 participants were used to validate the diagnosis performance. The PM-computer-aided diagnosis (PM-CAD) system consists of two parts: pituitary region detection and PM diagnosis. The diagnosis performance of the PM-CAD system was measured using the receiver operating characteristics (ROC) curve and area under the ROC curve (AUC), calibration curve, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-score.Results: Pituitary microadenoma-computer-aided diagnosis system showed 94.36% diagnostic accuracy and 98.13% AUC score in the testing dataset. We confirm the robustness and generalization of our PM-CAD system, the diagnostic accuracy in the internal dataset was 96.50% and in the external dataset was 92.26 and 92.36%, the AUC was 95.5, 94.7, and 93.7%, respectively. In human-computer competition, the diagnosis performance of our PM-CAD system was comparable to radiologists with >10 years of professional expertise (diagnosis accuracy of 94.0% vs. 95.0%, AUC of 95.6% vs. 95.0%). For the misdiagnosis cases from radiologists, our system showed a 100% accurate diagnosis. A browser-based software was designed to assist the PM diagnosis.Conclusions: This is the first report showing that the PM-CAD system is a viable tool for detecting PM. Our results suggest that the PM-CAD system is applicable to radiology departments, especially in primary health care institutions.


2017 ◽  
Vol 25 (5) ◽  
pp. 751-763 ◽  
Author(s):  
Yuchen Qiu ◽  
Shiju Yan ◽  
Rohith Reddy Gundreddy ◽  
Yunzhi Wang ◽  
Samuel Cheng ◽  
...  

Author(s):  
Mugahed A. Al-antari ◽  
Cam-Hao Hua ◽  
Sungyoung Lee

Abstract Background and Objective: The novel coronavirus 2019 (COVID-19) is a harmful lung disease that rapidly attacks people worldwide. At the end of 2019, COVID-19 was discovered as mysterious lung disease in Wuhan, Hubei province of China. World health organization (WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and classification of COVID-19 from the entire digital X-ray images is the key to efficiently assist patients and physicians for a fast and accurate diagnosis.Methods: In this paper, a deep learning computer-aided diagnosis (CAD) based on the YOLO predictor is proposed to simultaneously detect and diagnose COVID-19 among the other eight lung diseases: Atelectasis, Infiltration, Pneumothorax, Mass, Effusion, Pneumonia, Cardiomegaly, and Nodule. The proposed CAD system is assessed via five-fold tests for multi-class prediction problem using two different databases of chest X-ray images: COVID-19 and ChestX-ray8. The proposed CAD system is trained using an annotated training set of 50,490 chest X-ray images.Results: The suspicious regions of COVID-19 from the entire X-ray images are simultaneously detected and classified end-to-end via the proposed CAD predictor achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. The most testing images of COVID-19 and other lunge diseases are correctly predicted achieving intersection over union (IoU) with their GTs greater than 90%. Applying deep learning regularizers of data balancing and augmentation improve the diagnostic performance by 6.64% and 12.17% in terms of overall accuracy and F1-score, respectively. Meanwhile, the proposed CAD system presents its feasibility to diagnose the individual chest X-ray image within 0.009 second. Thus, the presented CAD system could predict 108 frames/second (FPS) at the real-time of prediction.Conclusion: The proposed deep learning CAD system shows its capability and reliability to achieve promising COVID-19 diagnostic performance among all other lung diseases. The proposed deep learning model seems reliable to assist health care systems, patients, and physicians in their practical validations.


Author(s):  
E. Emerson Nithiyaraj ◽  
S. Arivazhagan

Computed tomography (CT) scanning is a non-invasive diagnostic imaging technique that provides more detailed information about the liver than standard X-rays. Unlike ultrasound (US) examination, the quality of the CT image is not highly operator dependent. Plenty of works has been done using computer-aided diagnosis (CAD) for liver using conventional machine learning algorithms with better results. Recent advances especially in deep learning technology, can detect, classify, segment patterns in medical images where the advancements in deep learning has been shifted to medical domain also. One of the core abilities of deep learning is that they could learn feature representations automatically from data instead of feeding hand crafted features based on application. In this review, the basics of deep learning is introduced and their success in liver segmentation and lesion detection, classification using CT imaging modality is reviewed and their different network architectures is also discussed. Transfer learning is an interesting approach in deep learning which is also discussed. So, deep learning and CAD system has made a huge impact and has produced enhanced performance in healthcare industry.


2019 ◽  
Vol 51 ◽  
pp. 101-115 ◽  
Author(s):  
Naji Khosravan ◽  
Haydar Celik ◽  
Baris Turkbey ◽  
Elizabeth C. Jones ◽  
Bradford Wood ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1390
Author(s):  
Mohamed A. Kassem ◽  
Khalid M. Hosny ◽  
Robertas Damaševičius ◽  
Mohamed Meselhy Eltoukhy

Computer-aided systems for skin lesion diagnosis is a growing area of research. Recently, researchers have shown an increasing interest in developing computer-aided diagnosis systems. This paper aims to review, synthesize and evaluate the quality of evidence for the diagnostic accuracy of computer-aided systems. This study discusses the papers published in the last five years in ScienceDirect, IEEE, and SpringerLink databases. It includes 53 articles using traditional machine learning methods and 49 articles using deep learning methods. The studies are compared based on their contributions, the methods used and the achieved results. The work identified the main challenges of evaluating skin lesion segmentation and classification methods such as small datasets, ad hoc image selection and racial bias.


Sign in / Sign up

Export Citation Format

Share Document