scholarly journals Effect of Polyvalence on the Antibacterial Activity of a Synthetic Peptide Derived from Bovine Lactoferricin against Healthcare-Associated Infectious Pathogens

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sandra C. Vega Chaparro ◽  
J. Tatiana Valencia Salguero ◽  
Diana A. Martínez Baquero ◽  
Jaiver E. Rosas Pérez

Antimicrobial peptides (AMPs) are gaining interest as potential therapeutic agents. Peptides derived from bovine lactoferricin B (LfcinB) have been reported to exhibit antimicrobial activity, and the LfcinB RRWQWR sequence is the smallest known motif that exhibits antibacterial and cytotoxic activity. Our goal was to examine the effect of multicopy arrangements of the RRWQWR motif, on its antibacterial activity against healthcare-associated infections (HCAIs). Linear and branched peptides containing the RRWQWR motif were generated using solid phase peptide synthesis-Fmoc/tBu methodology, purified, and characterized using reverse phase-high performance liquid chromatography and matrix-assisted laser desorption/ionization time of flight mass spectrometry. For each peptide, the antibacterial activity againstStaphylococcus aureus(ATCC 25923 and 33591 strains) andKlebsiella pneumoniae(ATCC 13883 and 700603 strains) was assessed by measuring the minimum inhibitory and the minimum bactericidal concentrations, in the exponential phase. Cells were observed by scanning electron microscopy, and the hemolytic activity of the peptides was assessed. The overall results demonstrate that, compared to linear analogues, polyvalent presentation of the RRWQWR motif enhances its antibacterial activity against both Gram-negative and Gram-positive bacteria even on resistant strain.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sabine Scholz ◽  
Manuel Serif ◽  
David Schleheck ◽  
Martin D.J. Sayer ◽  
Alasdair M. Cook ◽  
...  

Abstract This study aimed to survey algal model organisms, covering phylogenetically representative and ecologically relevant taxa. Reports about the occurrence of sulfonates (particularly sulfoquinovose, taurine, and isethionate) in marine algae are scarce, and their likely relevance in global biogeochemical cycles and ecosystem functioning is poorly known. Using both field-collected seaweeds from NW Scotland and cultured strains, a combination of enzyme assays, high-performance liquid chromatography and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry was used to detect key sulfonates in algal extracts. This was complemented by bioinformatics, mining the publicly available genome sequences of algal models. The results confirm the widespread presence of sulfonates and their biosynthetic pathways in macro- and microalgae. However, it is also clear that catabolic pathways, if present, must be different from those documented from the bacterial systems since no complete cluster of gene homologues of key genes could be detected in algal genomes.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 413 ◽  
Author(s):  
Clément Offret ◽  
Ismaïl Fliss ◽  
Laurent Bazinet ◽  
André Marette ◽  
Lucie Beaulieu

The Atlantic mackerel, Scomber scombrus, is one of the most fished species in the world, but it is still largely used for low-value products, such as bait; mainly for crustacean fishery. This resource could be transformed into products of high value and may offer new opportunities for the discovery of bioactive molecules. Mackerel hydrolysate was investigated to discover antibacterial peptides with biotechnological potential. The proteolytic process generated a hydrolysate composed of 96% proteinaceous compounds with molecular weight lower than 7 kDa. From the whole hydrolysate, antibacterial activity was detected against both Gram-negative and Gram-positive bacteria. After solid phase extraction, purification of the active fraction led to the identification of 4 peptide sequences by mass spectrometry. The peptide sequence N-KVEIVAINDPFIDL-C, called Atlantic Mackerel GAPDH-related peptide (AMGAP), was selected for chemical synthesis to confirm the antibacterial activity and to evaluate its stability through in vitro digestibility. Minimal inhibitory concentrations of AMGAP revealed that Listeria strains were the most sensitive, suggesting potential as food-preservative to prevent bacterial growth. In addition, in vitro digestibility experiments found rapid (after 20 min) and early digestibility (stomach). This study highlights the biotechnological potential of mackerel hydrolysate due to the presence of the antibacterial AMGAP peptide.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 337 ◽  
Author(s):  
Lidija Svečnjak ◽  
Zvonimir Marijanović ◽  
Piotr Okińczyc ◽  
Piotr Marek Kuś ◽  
Igor Jerković

There is no systematic report about propolis chemical biodiversity from the Adriatic Sea islands affecting its antioxidant capacity. Therefore, the samples from the islands Krk, Rab, Pag, Biševo and Korčula were collected. Comprehensive methods were used to unlock their chemical biodiversity: headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) followed by gas chromatography and mass spectrometry (GC-MS); Fourier transform mid-infrared spectroscopy (FT-MIR); ultra high performance liquid chromatography with diode array detector and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QqTOF-MS) and DPPH and FRAP assay. The volatiles variability enabled differentiation of the samples in 2 groups of Mediterranean propolis: non-poplar type (dominated by α-pinene) and polar type (characterized by cadinane type sesquiterpenes). Spectral variations (FT-MIR) associated with phenolics and other balsam-related components were significant among the samples. The UHPLC profiles allowed to track compounds related to the different botanical sources such as poplar (pinobanksin esters, esters and glycerides of phenolic acids, including prenyl derivatives), coniferous trees (labdane, abietane diterpenes) and Cistus spp. (clerodane and labdane diterpenes, methylated myricetin derivatives). The antioxidant potential determined by DPPH ranged 2.6–81.6 mg GAE/g and in FRAP assay 0.1–0.8 mmol Fe2+/g. The highest activity was observed for the samples of Populus spp. origin. The antioxidant potential and phenolic/flavonoid content was positively, significantly correlated.


Sign in / Sign up

Export Citation Format

Share Document