scholarly journals Experimental Assessment of Rebar Corrosion in Concrete Slab Using Ground Penetrating Radar (GPR)

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmad Zaki ◽  
Megat Azmi Megat Johari ◽  
Wan Muhd Aminuddin Wan Hussin ◽  
Yessi Jusman

Corrosion of steel reinforcement is a major cause of structural damage that requires repair or replacement. Early detection of steel corrosion can limit the extent of necessary repairs or replacements and costs associated with the rehabilitation works. The ground penetrating radar (GPR) method has been found to be a useful method for evaluating reinforcement corrosion in existing concrete structures. In this paper, GPR was utilized to assess corrosion of steel reinforcement in a concrete slab. A technique for accelerating reinforcement bar corrosion using direct current (DC) power supply with 5% sodium chloride (NaCl) solution was used to induce corrosion to embedded reinforcement bars (rebars) in this concrete slab. A 2 GHz GPR was used to assess the corrosion of the rebars. The analysis of the results of the GPR data obtained shows that corrosion of the rebars could be effectively localized and assessed.

2015 ◽  
Vol 74 (3) ◽  
Author(s):  
Nurhayati Abdul Razak ◽  
Syahrul Fithry Senin ◽  
Roszilah Hamid

 The presence of inevitable air void defects in reinforced concrete components due to poor quality control during construction can further aggravate the moisture and chloride penetration in concrete to accelerate the corrosion process of the reinforcing steel. Non-destructive test  (NDT) methods, Ground Penetrating Radar (GPR) and Impact-Echo (IE), are utilised tp detect the void defects. This study is to compare the accuracy and limitations of both methods in detecting the sizes and depths of the air voids. The sample is a 600 × 400 ×200 mm3 reinforced grade 40 concrete slab with embedded air voids in the sample. The air-voids are introduced in the concrete slab by positioning air-void plastic balls with diameters of 67, 45, 27, 20 and 3 mm each at the depths of 70, 80, 100, 80 and 80 mm, respectively, from the top surface of the slab. Results show that GPR can detect the air voids with sizes larger than 20 mm in diameter with error ranging from -8.9 to 30% from their actual diameters. The IE method is only able to detect the air voids depths and not the voids’ sizes. It is also observed that the void depth estimation acquired by GPR is more accurate only for large size void (67 mm), but for sizes less than that, IE is more accurate in determining their locations. Both methos should be considered for NDT application in detecting voids depending on which parameter accuracy is inticipated.  


2017 ◽  
Vol 114 ◽  
pp. 123-132 ◽  
Author(s):  
Shuxian Hong ◽  
Herbert Wiggenhauser ◽  
Rosemarie Helmerich ◽  
Biqin Dong ◽  
Peng Dong ◽  
...  

Author(s):  
Mohamed A. Ismail ◽  
Han-Seung Lee ◽  
Mohd Warid Hussin

Corrosion of steel reinforcement embedded in concrete is one of the main causes of degradation of reinforced concrete structures. Degradation occurs in reinforced concrete structures from corrosion caused by the Chloride ingress into concrete. That degradation has a severe impact on the structure in terms of maintenance and rehabilitation costs. Therefore, early detection of reinforcement corrosion is important for efficient maintenance, repair and planning. Meanwhile, the evaluation of the corrosion of reinforcement by non-destructive measurements have been used a lot. In particular CM-II (corrosion meter) is used to measure the polarization resistance, but has some disadvantages. Embedded mini-sensor has been developed in order to overcome these disadvantages. In this study, measurement of corrosion by using the mini-sensor is compared with the measured results by CM-II to verify the validity of the newly developed mini senor. Results show that there are agreement in trends of the parameters measured and as such the developed mini sensor has a promising start to be used.


2008 ◽  
Vol 15 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Manuel Ramírez-Blanco ◽  
Francisco García-García ◽  
Isabel Rodríguez-Abad ◽  
Rosa Martínez-Sala ◽  
Javier Benlloch

2013 ◽  
Vol 569-570 ◽  
pp. 1124-1131 ◽  
Author(s):  
Ross O’Donovan ◽  
Brian D. O’Rourke ◽  
Kieran D. Ruane ◽  
John Justin Murphy

Anaerobic corrosion of steel reinforcement is rarely reported and limited literature is available on the subject. Corrosion of steel is an electrochemical process requiring a supply of oxygen in the presence of moisture. Steel corrosion product usually occupies a much larger volume than the un-corroded steel resulting in cracked or spalled concrete. If the supply of oxygen is restricted, black rust may be formed by the process of anaerobic corrosion. Black rust is not expansive, which makes it particularly difficult to detect in reinforced concrete. This paper presents a case study of anaerobic corrosion in the Mizen Bridge, together with an in-depth review of anaerobic corrosion of reinforcement in concrete, outlining black rust formation, characteristics and detection methods.


2014 ◽  
Vol 32 (2) ◽  
pp. 225
Author(s):  
Welitom Rodrigues Borges ◽  
Luís Anselmo Da Silva ◽  
Luciano Soares Da Cunha ◽  
Raimundo Mariano Gomes Castelo Branco ◽  
Márcio Muniz de Farias

ABSTRACT. This paper presents the results of a research performed by using Ground Penetration Radar (GPR) to evaluate the structure of the rigid pavement ofSantos Dumont Airport in Rio de Janeiro, Brazil. The GPR data profiles were acquired with 250 and 700 MHz shielded antennas. The geophysical investigation wasperformed along of 6 profiles, totaling 1432 meters of GPR sections. For calibration of the speed of propagation of electromagnetic wave were drilled three boreholesuntil the depth of 1.8 m. The results of GPR allowed the precise delineation of reflectors related to geotechnical interfaces (pavement thickness – concrete slab andmacadam) and geological (sand/embankment soil), showing the efficiency of this method in this case study.Keywords: GPR, concrete, rigid pavement, Santos Dumont Airport. RESUMO. Este trabalho apresenta o resultado de uma pesquisa desenvolvida usando Ground Penetrating Radar (GPR) para avaliar a estrutura do pavimento rígido do pátio de manobras de aeronaves do Aeroporto Santos Dumont, no Rio de Janeiro, Brasil. Para isso foram usadas antenas blindadas com frequências de250MHz e de 700 MHz. Os dados de GPR foram adquiridos no modo common offset , ao longo de 6 perfis que totalizam 1432 metros de investigação. Para a calibração da velocidade de propagação da onda eletromagnética foram executados três furos de sondagem até a profundidade de 1,8 m. Os resultados de GPR possibilitaram odelineamento preciso de refletores relacionados a interfaces geotécnicas (espessura do pavimento – revestimento de concreto e do macadame) e geológicas (areia/aterrocom entulho), mostrando a eficiência da aplicação deste método neste estudo de caso.Palavras-chave: GPR, concreto, pavimento rígido, Aeroporto Santos Dumont.


2021 ◽  
Vol 280 ◽  
pp. 07004
Author(s):  
Pavlo Krivenko ◽  
Igor Rudenko ◽  
Oleksandr Konstantynovskyi ◽  
Olha Boiko

Concretes mixed with seawater are characterised by enhanced performances, but action of chlorides and sulfates ensures the risk of reinforcement corrosion. Application of high consistency fresh concretes ensures changes in hardened concrete structure that causes the problem of steel reinforcement passive state ensuring. Thus mixing of plasticized concretes by seawater actualizes the search for means of steel corrosion prevention. Alkali-activated slag cements (further, AASC’s) reduce effect of ions Cl− and SO42− on steel reinforcement in concrete due to their exchange for ions OH− in the structure of zeolite-like alkaline hydroaluminosilicates. Complex additive «portland cement - calcium aluminate cement - clinoptilolite» was proposed to enhance the protective properties of AASC concretes to steel reinforcement. The results of DTA, X-ray diffraction, electron microscopy, microprobe analysis show that complex additive ensures to prevent steel reinforcement corrosion in AASC concrete mixed with seawater due to binding Cl− and SO42− ions in Kuzel’s salt in AASC hydration products and exchange of these aggressive ions with OH− ions in the structure of clinoptilolite. This effect of complex additive confirmed by surface state and the absence of mass loss of steel rebars embedded in plasticized AASC fine concrete mixed with seawater after 90 d of hardening.


2021 ◽  
Author(s):  
Tehseenullah Gumaryani

The deterioration of concrete can be due to: (1) the corrosion of reinforcement; (2) freezing and thawing, including frost damage; (3) chloride ingress; (4) carbonation of concrete; (5) sulphate attack; (6) acid attack; (7) alkali attack; (8) alkaliaggregate reaction; (9) salt attack; and (10) abrasion. Investigation of the durability of concrete generally consists of either the causes of deterioration or the extent of it. Usually, methods used to improve the durability of concrete aim to prevent the causes of deterioration; however, occasionally methods that limit the extent of damage are employed. In this context, and in order to propose test, which can assess the durability between the material properties and deterioration mechanisms, is carried out. Such an analysis should help to focus the attention of various investigators the key issues that ultimately determine the durability of concrete structures. Concerning the various deterioration mechanisms described above, one of the fundamental properties that influences the initiation and extent of damage of concrete is corrosion of reinforcement in the concrete structure. Environmental effects such as the freezing and thawing cycles have caused deterioration of the bridge decks and all other exposed reinforced concrete structures. Concrete is full of microcracks even when it is not loaded. When under vehicular traffic, some structural cracks form that can join the other already existing cracks, providing an easy route to reinforcing steel for the deicing salt. The presence of shrinkage and temperature cracks can also do the same. When chloride ions along with moisture reach the level of reinforcing steel, they start corroding the steel reinforcement. Corrosion of steel reinforcement in concrete bridge decks and parking structures is one of the most common types of deterioration, which has substantially reduced the useful life of such facilities. This widespread problem and the rapidly increasing cost of maintenance and repair have resulted in great economic and social repercussions. The rising rate of the use of chloride deicing salt is a major factor causing corrosion, and there is no feasible economic alternative to its use at present. Corrosion may occupy a greater volume than the parent steel reinforcement, thereby extending pressure on the upper concrete, causing it to spall off the main body of concrete. Common types of deterioration and corrosion mechanisms of reinforcement in concrete are reviewed with the view of effects of the concrete environment on the process. It is feasible to study the effect of the individual and combined causes on the onset and rate of reinforcement corrosion. The role of concrete design and construction practices is discussed as the first protection resort available against corrosion. The importance of concrete quality in providing protection to reinforcement cannot be overemphasized. Bleeding of concrete, which may happen during construction, can result in unfavorable consequences and lead to unfavorable consequences and also to premature corrosion of steel. The limitations and applicabilities of the various repair techniques and protective measures in existing structures, of course, have differential impacts on concrete in version environments. Cathodic protection is considered the most versatile and effective means of controlling the corrosion of steel and subsequent deterioration of the concrete.


Author(s):  
Imad L. Al-Qadi ◽  
Samer Lahouar

Ground-penetrating radar (GPR) is a nondestructive investigation tool that is usually used in flexible pavement evaluation to estimate the thicknesses of the various layers composing the pavement. GPR is also used in flexible pavements to detect subsurface distresses, such as moisture accumulation and air voids. For rigid pavements and bridge decks, GPR is used to measure the thickness of the concrete slab and detect the location of reinforcing bars (rebar). Rebar detection is typically achieved, in this case, when an experienced operator finds the rebar's classic parabolic signature in the GPR data. This paper presents image-processing techniques that can be used to detect the rebar parabolic signature automatically in GPR data collected from rigid pavements with a high-frequency ground-coupled antenna. After detection of the rebar, the reflected parabolic shape is fit to a theoretical reflection model to estimate the pavement's dielectric constant and the rebar depth. The algorithms were validated on GPR data collected from a known continuously reinforced concrete pavement section. The technique showed an average error of 2.6% on the estimated rebar cover depth.


Sign in / Sign up

Export Citation Format

Share Document