scholarly journals GPR APPLIED TO RIGID PAVEMENT FROM SANTOS DUMONT AIRPORT, RJ

2014 ◽  
Vol 32 (2) ◽  
pp. 225
Author(s):  
Welitom Rodrigues Borges ◽  
Luís Anselmo Da Silva ◽  
Luciano Soares Da Cunha ◽  
Raimundo Mariano Gomes Castelo Branco ◽  
Márcio Muniz de Farias

ABSTRACT. This paper presents the results of a research performed by using Ground Penetration Radar (GPR) to evaluate the structure of the rigid pavement ofSantos Dumont Airport in Rio de Janeiro, Brazil. The GPR data profiles were acquired with 250 and 700 MHz shielded antennas. The geophysical investigation wasperformed along of 6 profiles, totaling 1432 meters of GPR sections. For calibration of the speed of propagation of electromagnetic wave were drilled three boreholesuntil the depth of 1.8 m. The results of GPR allowed the precise delineation of reflectors related to geotechnical interfaces (pavement thickness – concrete slab andmacadam) and geological (sand/embankment soil), showing the efficiency of this method in this case study.Keywords: GPR, concrete, rigid pavement, Santos Dumont Airport. RESUMO. Este trabalho apresenta o resultado de uma pesquisa desenvolvida usando Ground Penetrating Radar (GPR) para avaliar a estrutura do pavimento rígido do pátio de manobras de aeronaves do Aeroporto Santos Dumont, no Rio de Janeiro, Brasil. Para isso foram usadas antenas blindadas com frequências de250MHz e de 700 MHz. Os dados de GPR foram adquiridos no modo common offset , ao longo de 6 perfis que totalizam 1432 metros de investigação. Para a calibração da velocidade de propagação da onda eletromagnética foram executados três furos de sondagem até a profundidade de 1,8 m. Os resultados de GPR possibilitaram odelineamento preciso de refletores relacionados a interfaces geotécnicas (espessura do pavimento – revestimento de concreto e do macadame) e geológicas (areia/aterrocom entulho), mostrando a eficiência da aplicação deste método neste estudo de caso.Palavras-chave: GPR, concreto, pavimento rígido, Aeroporto Santos Dumont.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmad Zaki ◽  
Megat Azmi Megat Johari ◽  
Wan Muhd Aminuddin Wan Hussin ◽  
Yessi Jusman

Corrosion of steel reinforcement is a major cause of structural damage that requires repair or replacement. Early detection of steel corrosion can limit the extent of necessary repairs or replacements and costs associated with the rehabilitation works. The ground penetrating radar (GPR) method has been found to be a useful method for evaluating reinforcement corrosion in existing concrete structures. In this paper, GPR was utilized to assess corrosion of steel reinforcement in a concrete slab. A technique for accelerating reinforcement bar corrosion using direct current (DC) power supply with 5% sodium chloride (NaCl) solution was used to induce corrosion to embedded reinforcement bars (rebars) in this concrete slab. A 2 GHz GPR was used to assess the corrosion of the rebars. The analysis of the results of the GPR data obtained shows that corrosion of the rebars could be effectively localized and assessed.


2014 ◽  
Vol 501-504 ◽  
pp. 847-851
Author(s):  
Che Way Chang ◽  
Chen Hua Lin ◽  
Shyi Lin Lee ◽  
Ping Huang Chen ◽  
Ching Cheng Jen ◽  
...  

Ground Penetrating Radar (GPR) is a high efficiency technology to detect the cylindrical medium in the concretes material. The electromagnetic wave is incidental to double-rebar, and measures the reflection signal behaviors from energy zone. The results from the reflection signal of electromagnetic wave of the reinforcement concretes allow evaluating the radius of double-bar (1.6cm, 1cm). A physical model can effectively measure the radius of double-bar by the result of electromagnetic wave reflex behavior analysis. The results indicate that, this techology is capable of estimating the reinforcing double-bar radius to within 6%.


2021 ◽  
Vol 35 (11) ◽  
pp. 1437-1438
Author(s):  
Eder Ruiz ◽  
Daniel Chaparro-Arce ◽  
John Pantoja ◽  
Felix Vega ◽  
Chaouki Kasmiv ◽  
...  

In this paper, the singularity expansion method (SEM) is used to improve the signal-to-clutter ratio of radargrams obtained with a ground penetration radar (GPR). SEM allows to select the poles of the GPR signals corresponding to unwanted signals, clutter, and also reflections of specific buried objects. A highly reflective metallic material was used to assess the use of SEM as a tool to eliminate unwanted reflections and signals produced by a GPR. Selected clutter poles are eliminated from each frame of the SAR image in order to keep only desired poles for analysis. Finally, the reconstructed radargram obtained applying SEM is compared with the image obtained using a well-known processing technique. Results show that the proposed technique can be used to straightforwardly remove undesired signals measured with GPRs.


2015 ◽  
Vol 74 (3) ◽  
Author(s):  
Nurhayati Abdul Razak ◽  
Syahrul Fithry Senin ◽  
Roszilah Hamid

 The presence of inevitable air void defects in reinforced concrete components due to poor quality control during construction can further aggravate the moisture and chloride penetration in concrete to accelerate the corrosion process of the reinforcing steel. Non-destructive test  (NDT) methods, Ground Penetrating Radar (GPR) and Impact-Echo (IE), are utilised tp detect the void defects. This study is to compare the accuracy and limitations of both methods in detecting the sizes and depths of the air voids. The sample is a 600 × 400 ×200 mm3 reinforced grade 40 concrete slab with embedded air voids in the sample. The air-voids are introduced in the concrete slab by positioning air-void plastic balls with diameters of 67, 45, 27, 20 and 3 mm each at the depths of 70, 80, 100, 80 and 80 mm, respectively, from the top surface of the slab. Results show that GPR can detect the air voids with sizes larger than 20 mm in diameter with error ranging from -8.9 to 30% from their actual diameters. The IE method is only able to detect the air voids depths and not the voids’ sizes. It is also observed that the void depth estimation acquired by GPR is more accurate only for large size void (67 mm), but for sizes less than that, IE is more accurate in determining their locations. Both methos should be considered for NDT application in detecting voids depending on which parameter accuracy is inticipated.  


2011 ◽  
Vol 5 (2) ◽  
pp. 329-340 ◽  
Author(s):  
H. Hausmann ◽  
M. Behm

Abstract. Several caves in high elevated alpine regions host up to several meters thick ice. The age of the ice may exceed some hundreds or thousands of years. However, structure, formation and development of the ice are not fully understood and are subject to relatively recent investigation. The application of ground-penetrating radar (GPR) enables to determine thickness, volume, basal and internal structure of the ice and provides as such important constraints for related studies. We present results from four caves located in the Northern Calcareous Alps of Austria. We show that the ice is far from being uniform. The base has variable reflection signatures, which is related to the type and size of underlying debris. The internal structure of the cave ice is characterized by banded reflections. These reflection signatures are interpreted as thin layers of sediments and might help to understand the ice formation by representing isochrones. Overall, the relatively low electromagnetic wave speed suggests that the ice is temperate, and that a liquid water content of about 2% is distributed homogenously in the ice.


2013 ◽  
Vol 438-439 ◽  
pp. 1080-1083 ◽  
Author(s):  
Hui Ren Bai ◽  
Jing Jing Li

The paper mainly introduces the problem of grouting reinforcement of buildings over the old goaf, and presents to the positioning of grouting reinforcement technology in the goaf. Combined with engineering example, the paper discusses the grouting filling method to strengthening governance goaf. Three methods including drill detection, ground penetrating radar (GPR) detection and electromagnetic wave CT method are used for integrated detection.


2017 ◽  
Vol 17 (4B) ◽  
pp. 167-174
Author(s):  
Van Nguyen Thanh ◽  
Thuan Van Nguyen ◽  
Trung Hoai Dang ◽  
Triet Minh Vo ◽  
Lieu Nguyen Nhu Vo

Electromagnetic wave velocity is the most important parameter in processing ground penetrating radar data. Migration algorithm which heavily depends on wave velocity is used to concentrate scattered signals back to their correct locations. Depending wave velocity in urban area is not easy task by using traditional methods (i.e., common midpoint). We suggest using entropy and energy diagram as standard for achieving suitable velocity estimation. The results of one numerical model and areal data indicate that migrated section using accurate velocity has minimum entropy or maximum energy. From the interpretation, size and depth of anomalies are reliably identified.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 127
Author(s):  
Daniliev S.M ◽  
Danilieva N.A

The urgency of the issue being studied is determined by widespread large-scale implementation of ground penetrating radar (GPR) method within the study practice of technical state of various engineering-geological sites over a long operational period. Such buildings and structures as dams, architectural landmarks, residential and industrial buildings, temples and churches, roadways and takeoff runways may be referred to main engineering and geological sites which have been studied via ground penetrating radar method. Cracks of different length, orientation and opening, as well as cavities of various localization, being distinguished by filling material, are the main types of irregularities in the above-mentioned sites, which were being formed in the process of prolonged or improper operation. However, due to vastness of the irregularities being studied and the impossibility to include all the types of possible defects into this article, we have settled on the cavities which are the most commonly encountered in the course of practice only. This article considers the approach to analysis of the electromagnetic wave field frequency characteristics being applied during conducting ground penetrating radar studies of irregularities in the structure of engineering-geological sites on the basis of the results of electromagnetic wave fields mathematical simulation, and of the results obtained in experimental studies at real engineering-geological sites as well. There has been proposed a method based of inverse Fourier transformation for studying spectrum shift in georadargrams. The georadargram is a set of registered signals, which is obtained during even movement of the georadar along the survey line. Due to that, this article is aimed at attraction of analysis of wave electromagnetic field attributes in addition to standard methods of ground penetrating radar (GPR) data processing and interpretation, which allows to extend significantly prospect capabilities of GPR method by obtaining extra data on heterogeneous zones parameters at engineering and geological sites, and, thus, proceed from qualitative notions on technical condition of studied object to quantitative ones.  


2021 ◽  
Vol 873 (1) ◽  
pp. 012019
Author(s):  
L Gustiantini ◽  
U Kamiludin ◽  
M Zulfikar ◽  
Y Noviadi ◽  
U Hernawan ◽  
...  

Abstract Tanjung Berikat Coast in Central Bangka, is a part of the Southeast Asian tin belt. We conducted four Ground-Penetrating Radar (GPR) survey lines and 13 hand auger coring to understand sediment deposition and composition. Two similar units were determined from GPR lines BLG 01–BLG 03: Unit A at the top part, reflected by parallel and continuous reflector configuration, weak–strong electromagnetic wave. Underneath Unit A is Unit B, characterized by subparallel configuration, not continuous–chaotic, weak–medium electromagnetic wave. Unit B is absent in BLG 04. We identify another two units from BLG 04 and BLG 03, Unit C, characterized by subparallel reflector configuration, not continuous– chaotic, weak–strong electromagnetic wave. It exhibits distinctive modulating contact with Unit D. Unit D is characterized by chaotic reflector configuration, relatively stronger electromagnetic wave that might be correlated to the granite intrusion Tanjung Klabat. Sediment deposit is composed of fine–coarse sand, consisting mostly of clastic plutonic and clastic biogenic (coral and mollusk fragments), which increase downward. This indicates marine-fluvial influence, which suggests that sea-level changes strongly influence sedimentation process. Unit A from GPR is correlated to these sediment deposits, the other three units might be correlated to weathering of older insitu deposit.


Sign in / Sign up

Export Citation Format

Share Document