scholarly journals The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Philipp Marx ◽  
Wojciech Kowalczyk ◽  
Aydin Demircioglu ◽  
Gary Neil Brault ◽  
Hermann Wendt ◽  
...  

The aim of the present in vitro study was the evaluation of the fluid dynamical performance of the Carpentier-Edwards PERIMOUNT Magna Ease depending on the prosthetic size (21, 23, and 25 mm) and the cardiac output (3.6–6.4 L/min). A self-constructed flow channel in combination with particle image velocimetry (PIV) enabled precise results with high reproducibility, focus on maximal and local peek velocities, strain, and velocity gradients. These flow parameters allow insights into the generation of forces that act on blood cells and the aortic wall. The results showed that the 21 and 23 mm valves have a quite similar performance. Maximal velocities were 3.03±0.1 and 2.87±0.13 m/s; maximal strain Exx, 913.81±173.25 and 896.15±88.16 1/s; maximal velocity gradient Eyx, 1203.14±221.84 1/s and 1200.81±61.83 1/s. The 25 mm size revealed significantly lower values: maximal velocity, 2.47±0.15 m/s; maximal strain Exx, 592.98±155.80 1/s; maximal velocity gradient Eyx, 823.71±38.64 1/s. In summary, the 25 mm Magna Ease was able to create a wider, more homogenous flow with lower peak velocities especially for higher flow rates. Despite the wider flow, the velocity values close to the aortic walls did not exceed the level of the smaller valves.

2021 ◽  
pp. 039139882110130
Author(s):  
Guang-Mao Liu ◽  
Fu-Qing Jiang ◽  
Xiao-Han Yang ◽  
Run-Jie Wei ◽  
Sheng-Shou Hu

Blood flow inside the left ventricle (LV) is a concern for blood pump use and contributes to ventricle suction and thromboembolic events. However, few studies have examined blood flow inside the LV after a blood pump was implanted. In this study, in vitro experiments were conducted to emulate the intraventricular blood flow, such as blood flow velocity, the distribution of streamlines, vorticity and the standard deviation of velocity inside the LV during axial blood pump support. A silicone LV reconstructed from computerized tomography (CT) data of a heart failure patient was incorporated into a mock circulatory loop (MCL) to simulate human systemic circulation. Then, the blood flow inside the ventricle was examined by particle image velocimetry (PIV) equipment. The results showed that the operating conditions of the axial blood pump influenced flow patterns within the LV and areas of potential blood stasis, and the intraventricular swirling flow was altered with blood pump support. The presence of vorticity in the LV from the thoracic aorta to the heart apex can provide thorough washing of the LV cavity. The gradually extending stasis region in the central LV with increasing blood pump support is necessary to reduce the thrombosis potential in the LV.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 47-55
Author(s):  
N.-S. Park ◽  
H. Park

Recognizing the significance of factual velocity fields in a rapid mixer, this study focuses on analyzing local velocity gradients in various mixer geometries with particle image velocimetry (PIV) and comparing the results of the analysis with the conventional G-value, for reviewing the roles of G-value in the current design and operation practices. The results of this study clearly show that many arguments and doubts are possible about the scientific correctness of G-value, and its current use. This is because the G-value attempts to represent the turbulent and complicated factual velocity field in a jar. Also, the results suggest that it is still a good index for representing some aspects of mixing condition, at least, mixing intensity. However, it cannot represent the distribution of velocity gradients in a jar, which is an important factor for mixing. This study as a result suggests developing another index for representing the distribution to be used with the G-value.


Author(s):  
Ryan A. Peck ◽  
Edver Bahena ◽  
Reza Jahan ◽  
Guillermo Aguilar ◽  
Hideaki Tsutsui ◽  
...  

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Alinaghi Salari ◽  
M. B. Shafii ◽  
Shapour Shirani

Microbubbles are broadly used as ultrasound contrast agents. In this paper we use a low-cost flow focusing microchannel fabrication method for preparing microbubble contrast agents by using some surface active agents and a viscosity enhancing material to obtain appropriate microbubbles with desired lifetime and stability for any in vitro infusion for velocity measurement. All the five parameters that govern the bubble size extract and some efforts are done to achieve the smallest bubbles by adding suitable surfactant concentrations. By using these microbubbles for the echo-particle image velocimetry method, we experimentally determine the velocity field of steady state and pulsatile pipe flows.


Author(s):  
T Lee ◽  
LS Ko

The vortex flow and lift force generated by a 50°-sweep non-slender reverse delta wing were investigated via particle image velocimetry, together with flow visualization and force balance measurement, at Re = 11,000. The non-slender reverse delta wing produced a delayed stall but a lower lift compared to its delta wing counterpart. The stalling mechanism was also found to be triggered by the disruption of the multiple spanwise vortex filaments developed over the upper wing surface. The vortex flowfield was, however, characterized by the co-existence of reverse delta wing vortices and multiple shear-layer vortices. The outboard location of the reverse delta wing vortex further implies that the lift force is mainly generated by the wing lower surface while the upper surface acts as a wake generator. The spatial progression of the flow parameters of the vortex generated by the non-slender reverse delta wing as a function of α was also discussed.


Sign in / Sign up

Export Citation Format

Share Document