Analysis of local velocity gradients in rapid mixer using particle image velocimetry technique

2002 ◽  
Vol 2 (5-6) ◽  
pp. 47-55
Author(s):  
N.-S. Park ◽  
H. Park

Recognizing the significance of factual velocity fields in a rapid mixer, this study focuses on analyzing local velocity gradients in various mixer geometries with particle image velocimetry (PIV) and comparing the results of the analysis with the conventional G-value, for reviewing the roles of G-value in the current design and operation practices. The results of this study clearly show that many arguments and doubts are possible about the scientific correctness of G-value, and its current use. This is because the G-value attempts to represent the turbulent and complicated factual velocity field in a jar. Also, the results suggest that it is still a good index for representing some aspects of mixing condition, at least, mixing intensity. However, it cannot represent the distribution of velocity gradients in a jar, which is an important factor for mixing. This study as a result suggests developing another index for representing the distribution to be used with the G-value.

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Sayantan Bhattacharya ◽  
Reid A. Berdanier ◽  
Pavlos P. Vlachos ◽  
Nicole L. Key

Nonintrusive measurement techniques such as particle image velocimetry (PIV) are growing in both capability and utility for turbomachinery applications. However, the restrictive optical access afforded by multistage research compressors typically requires the use of a periscope probe to introduce the laser sheet for measurements in a rotor passage. This paper demonstrates the capability to perform three-dimensional PIV in a multistage compressor without the need for intrusive optical probes and requiring only line-of-sight optical access. The results collected from the embedded second stage of a three-stage axial compressor highlight the rotor tip leakage flow, and PIV measurements are qualitatively compared with high-frequency response piezoresistive pressure measurements to assess the tip leakage flow identification.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ahmad Falahatpisheh ◽  
Arash Kheradvar

Introduction: The two-dimensional (2D) echocardiographic particle image velocimetry technique that was introduced in 2010 received much attention in clinical cardiology. Cardiac flow visualization based on contrast echocardiography results in images with high temporal resolution that are obtainable at relatively low cost. This makes it an ideal diagnostic and follow-up tool for routine clinical use. However, cardiac flow in a cardiac cycle is multidirectional with a tendency to spin in three dimensions rather than two-dimensional curl. Here, for the first time, we introduce a volumetric echocardiographic particle image velocimetry technique that robustly acquires the flow in three spatial dimensions and in time: Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV). Methods: V-Echo-PIV technique utilizes matrix array 3D ultrasound probes to capture the flow seeded with an ultrasound contrast agent (Definity). For this feasibility study, we used a pulse duplicator with a silicone ventricular sac along with bioprosthetic heart valves at the inlet and outlet. GE Vivid E9 system with an Active Matrix 4D Volume Phased Array probe at 30 Hz was used to capture the flow data (Figure 1). Results: The 3D particle field was obtained with excellent spatial resolution without significant noise (Figure 1). 3D velocity field was successfully captured for multiple cardiac cycles. Flow features are shown in Figure 2 where the velocity vectors in two selected slices and some streamlines in 3D space are depicted. Conclusions: We report successful completion of the feasibility studies for volumetric echocardiographic PIV in an LV phantom. The small-scale features of flow in the LV phantom were revealed by this technique. Validation and human studies are currently in progress.


2002 ◽  
Author(s):  
Shankar Devasenathipathy ◽  
Rajiv Bharadwaj ◽  
Juan G. Santiago

This paper presents an experimental investigation of field amplified sample stacking (FASS) with micron resolution particle image velocimetry (μPIV). The preliminary experiments reported in this work show particle velocity fields in electrokinetic flow in a glass microchannel with a single buffer-buffer interface. The buffer-to-buffer conductivity ratio is 10. Stacking of latex microspheres (i.e., increases in their number density) in the presence of a background electroosmotic flow is demonstrated. The generation of an internal pressure gradient is quantified using μPIV. This work is part of an ongoing study of the spatial and temporal development of the velocity and concentration profiles of FASS systems.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012018
Author(s):  
S S Usmanova ◽  
N M Skornyakova ◽  
Yu S Belov ◽  
M V Sapronov ◽  
A V Kuchmenko ◽  
...  

Abstract The paper is devoted to development of the optical electronic setup for carrying out measurements by multicolor particle image velocimetry. The main advantage of this method is the ability to visualize vector velocity fields in several planes simultaneously. As a result a 3D model of a setup was developed, a laboratory sample was assembled and series of testing experiments were performed. As a test object, vortex structure formed by a chemical stirrer in a cuvette with liquid has been considered. The experimental data were compared with the computer model developed in SolidWorks and FlowVision software.


2021 ◽  
Vol 23 ◽  
Author(s):  
Eduardo Hélio de Novais Miranda ◽  
Rayner Pathele Ferreira ◽  
Rodrigo Allan Pereira ◽  
Taiane Oliveira Guedes ◽  
Fernando Pujaico Rivera

2006 ◽  
Author(s):  
Pranay Mahendra ◽  
Michael G. Olsen

Recently the automotive industry has been using superchargers to boost the power generated by the engine, but the noise generated by these superchargers is of great concern. The noise generated during the working of the supercharger is primarily a fluid mechanics phenomenon. Particle Image Velocimetry (PIV) was used to study air flow characteristics of a positive displacement supercharger with an emphasis on gaining insights into strategies for noise reduction. PIV was used to measure the instantaneous and ensemble-averaged velocity fields of the flow at the outlet of the supercharger as a function of blade position, allowing for visualization of the flow as it leave the blades. The preliminary results show that the flow exits the supercharger as a high speed jet at the end closer to the pulley end, and the flow varies with the change in blade position.


Sign in / Sign up

Export Citation Format

Share Document