scholarly journals Elevated and Correlated Expressions of miR-24, miR-30d, miR-146a, and SFRP-4 in Human Abdominal Adipose Tissue Play a Role in Adiposity and Insulin Resistance

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yury O. Nunez Lopez ◽  
Gabriella Garufi ◽  
Magdalena Pasarica ◽  
Attila A. Seyhan

Objective. We explored the relationships among microRNAs (miRNAs) and SFRP4, as they relate to adipose tissue functions including lipolysis, glucose and glycerol turnover, and insulin sensitivity. Methods. Abdominal adipose tissue (AbdAT) levels of thirteen microRNAs (miRNAs), SFRP4, and VEGF in lean nondiabetic subjects (n=7), subjects with obesity (n=5), and subjects with obesity and type 2 diabetes (T2DM) (n=5) were measured by qPCR. Insulin sensitivity was measured by the euglycemic-hyperinsulinemic clamp. Osmium fixation and Coulter counting were used for adipocyte sizing. Data were analyzed using generalized linear models that adjusted for age, gender, and ethnicity. Results. AbdAT miR-24, miR-30d, and miR-146a were elevated in subjects with obesity (P<0.05) and T2DM (P<0.1) and positively correlated with measures of percent body fat by DXA (rmiR.24=0.894, rmiR.146a=0.883, P<0.05), and AbdAT SFRP4 (rmiR.30=0.93, rmiR.146a=0.88, P<0.05). These three miRNAs additionally correlated among themselves (rmiR.24~miR.146a=0.90, rmiR.30~miR.146a=0.85, P<0.01). Conclusions. This study suggests a novel association between the elevated levels of miRNAs miR-24, miR-30d, and miR-146a (apparently coregulated) and the level of SFRP4 transcript in AbdAT of subjects with obesity and T2DM. These molecules might be part of a regulatory loop involved in AbdAT remodeling/adiposity and systemic insulin resistance. This trial is registered with NCT00704197.

2020 ◽  
Vol 8 (1) ◽  
pp. e001578
Author(s):  
Yutaro Morita ◽  
Takafumi Senokuchi ◽  
Sarie Yamada ◽  
Toshiaki Wada ◽  
Tatsuya Furusho ◽  
...  

IntroductionObesity-related insulin resistance is a widely accepted pathophysiological feature in type 2 diabetes. Systemic metabolism and immunity are closely related, and obesity represents impaired immune function that predisposes individuals to systemic chronic inflammation. Increased macrophage infiltration and activation in peripheral insulin target tissues in obese subjects are strongly related to insulin resistance. Using a macrophage-specific proliferation inhibition mouse model (mac-p27Tg), we previously reported that suppressed plaque inflammation reduced atherosclerosis and improved plaque stabilization. However, the direct evidence that proliferating macrophages are responsible for inducing insulin resistance was not provided.Research design and methodsThe mac-p27Tg mice were fed a high-fat diet, and glucose metabolism, histological changes, macrophage polarization, and tissue functions were investigated to reveal the significance of tissue macrophage proliferation in insulin resistance and obesity.ResultsThe mac-p27Tg mice showed improved glucose tolerance and insulin sensitivity, along with a decrease in the number and ratio of inflammatory macrophages. Obesity-induced inflammation and oxidative stress was attenuated in white adipose tissue, liver, and gastrocnemius. Histological changes related to insulin resistance, such as liver steatosis/fibrosis, adipocyte enlargement, and skeletal muscle fiber transformation to fast type, were ameliorated in mac-p27Tg mice. Serum tumor necrosis factor alpha and free fatty acid were decreased, which might partially impact improved insulin sensitivity and histological changes.ConclusionsMacrophage proliferation in adipose tissue, liver, and skeletal muscle was involved in promoting the development of systemic insulin resistance. Controlling the number of tissue macrophages by inhibiting macrophage proliferation could be a therapeutic target for insulin resistance and type 2 diabetes.


2020 ◽  
Vol 21 (16) ◽  
pp. 5738
Author(s):  
Xiong Weng ◽  
De Lin ◽  
Jeffrey T. J. Huang ◽  
Roland H. Stimson ◽  
David H. Wasserman ◽  
...  

Aberrant extracellular matrix (ECM) remodelling in muscle, liver and adipose tissue is a key characteristic of obesity and insulin resistance. Despite its emerging importance, the effective ECM targets remain largely undefined due to limitations of current approaches. Here, we developed a novel ECM-specific mass spectrometry-based proteomics technique to characterise the global view of the ECM changes in the skeletal muscle and liver of mice after high fat (HF) diet feeding. We identified distinct signatures of HF-induced protein changes between skeletal muscle and liver where the ECM remodelling was more prominent in the muscle than liver. In particular, most muscle collagen isoforms were increased by HF diet feeding whereas the liver collagens were differentially but moderately affected highlighting a different role of the ECM remodelling in different tissues of obesity. Moreover, we identified a novel association between collagen 24α1 and insulin resistance in the skeletal muscle. Using quantitative gene expression analysis, we extended this association to the white adipose tissue. Importantly, collagen 24α1 mRNA was increased in the visceral adipose tissue, but not the subcutaneous adipose tissue of obese diabetic subjects compared to lean controls, implying a potential pathogenic role of collagen 24α1 in obesity and type 2 diabetes.


Endocrinology ◽  
2009 ◽  
Vol 150 (4) ◽  
pp. 1670-1679 ◽  
Author(s):  
Michael M. Swarbrick ◽  
Peter J. Havel ◽  
Arthur A. Levin ◽  
Andrew A. Bremer ◽  
Kimber L. Stanhope ◽  
...  

Protein tyrosine phosphatase (PTP)-1B antagonizes insulin signaling and is a potential therapeutic target for insulin resistance associated with obesity and type 2 diabetes. To date, studies of PTP-1B have been limited by the availability of specific antagonists; however, treatment of rodents with antisense oligonucleotides (ASOs) directed against PTP-1B improves insulin sensitivity, inhibits lipogenic gene expression, and reduces triglyceride accumulation in liver and adipose tissue. Here we investigated ASO-mediated PTP-1B inhibition in primates. First, PTP-1B ASO (ISIS 113715) dose-dependently inhibited PTP-1B mRNA and protein expression in cultured monkey hepatocytes. Subcutaneous administration of ISIS 113715 reduced PTP-1B mRNA expression in liver and adipose tissue of normal-weight monkeys by 40–50% and improved insulin sensitivity during an iv glucose tolerance test (IVGTT). In obese, insulin-resistant rhesus monkeys, treatment with 20 mg/kg ISIS 113715 for 4 wk reduced fasting concentrations of insulin and glucose and reduced insulin responses during an IVGTT. In these animals, adiponectin concentrations were also increased by 70%, most of which was an increase of high-molecular-weight oligomers. These effects were not observed in monkeys on a lower, dose-escalation regimen (1–10 mg/kg over 9 wk). Overall, the increase of adiponectin concentrations during ISIS 113715 treatment was correlated with the lowering of insulin responses during IVGTT (r = −0.47, P = 0.042). These results indicate that inhibition of PTP-1B with ASOs such as ISIS 113715 may be a viable approach for the treatment and prevention of obesity-associated insulin resistance and type 2 diabetes because they potently increase adiponectin concentrations in addition to improving insulin sensitivity.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 425 ◽  
Author(s):  
Kenneth D’Souza ◽  
Angella Mercer ◽  
Hannah Mawhinney ◽  
Thomas Pulinilkunnil ◽  
Chibuike C. Udenigwe ◽  
...  

Deregulation of lipid metabolism and insulin function in muscle and adipose tissue are hallmarks of systemic insulin resistance, which can progress to type 2 diabetes. While previous studies suggested that milk proteins influence systemic glucose homeostasis and insulin function, it remains unclear whether bioactive peptides generated from whey alter lipid metabolism and its accumulation in muscle and adipose tissue. Therefore, we incubated murine 3T3-L1 preadipocytes and C2C12 myotubes with a whey peptide mixture produced through pepsin-pancreatin digestion, mimicking peptides generated in the gut from whey protein hydrolysis, and examined its effect on indicators of lipid metabolism and insulin sensitivity. Whey peptides, particularly those derived from bovine serum albumin (BSA), promoted 3T3-L1 adipocyte differentiation and triacylglycerol (TG) accumulation in accordance with peroxisome proliferator-activated receptor γ (PPARγ) upregulation. Whey/BSA peptides also increased lipolysis and mitochondrial fat oxidation in adipocytes, which was associated with the upregulation of peroxisome proliferator-activated receptor δ (PPARδ). In C2C12 myotubes, whey but not BSA peptides ameliorated palmitate-induced insulin resistance, which was associated with reduced inflammation and diacylglycerol accumulation, and increased sequestration of fatty acids in the TG pool. Taken together, our study suggests that whey peptides generated via pepsin-pancreatin digestion profoundly alter lipid metabolism and accumulation in adipocytes and skeletal myotubes.


2012 ◽  
Vol 303 (9) ◽  
pp. E1134-E1141 ◽  
Author(s):  
Jason M. Ng ◽  
Koichiro Azuma ◽  
Carol Kelley ◽  
Richard Pencek ◽  
Zofia Radikova ◽  
...  

Excess amounts of abdominal subcutaneous (SAT) and visceral (VAT) adipose tissue (AT) are associated with insulin resistance, even in normal-weight subjects. In contrast, gluteal-femoral AT (GFAT) is hypothesized to offer protection against insulin resistance. Dynamic PET imaging studies were undertaken to examine the contributions of both metabolic activity and size (volume) of these depots in systemic glucose metabolism. Nonobese, healthy volunteers ( n = 15) underwent dynamic PET imaging uptake of [18F]FDG at a steady-state (20 mU·m−2·min−1) insulin infusion. PET images of tissue [18F]FDG activity were coregistered with MRI to derive K values for insulin-stimulated rates of fractional glucose uptake within tissue. Adipose tissue volume was calculated from DEXA and MRI. VAT had significantly higher rates of fractional glucose uptake per volume than SAT ( P < 0.05) or GFAT ( P < 0.01). KGFAT correlated positively ( r = 0.67, P < 0.01) with systemic insulin sensitivity [glucose disappearance rate (Rd)] and negatively with insulin-suppressed FFA ( r = −0.71, P < 0.01). SAT ( r = −0.70, P < 0.01) and VAT mass ( r = −0.55, P < 0.05) correlated negatively with Rd, but GFAT mass did not. We conclude that rates of fractional glucose uptake within GFAT and VAT are significantly and positively associated with systemic insulin sensitivity in nonobese subjects. Furthermore, whereas SAT and VAT amounts are confirmed to relate to systemic insulin resistance, GFAT amount is not associated with insulin resistance. These dynamic PET imaging studies indicate that both quantity and quality of specific AT depots have distinct roles in systemic insulin resistance and may help explain the metabolically obese but normal-weight phenotype.


2016 ◽  
Vol 64 (5) ◽  
pp. 989-991 ◽  
Author(s):  
Esben Søndergaard ◽  
Michael D Jensen

In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses.


2015 ◽  
Vol 112 (14) ◽  
pp. 4363-4368 ◽  
Author(s):  
James E. N. Minchin ◽  
Ingrid Dahlman ◽  
Christopher J. Harvey ◽  
Niklas Mejhert ◽  
Manvendra K. Singh ◽  
...  

Genome-wide association studies have implicated PLEXIN D1 (PLXND1) in body fat distribution and type 2 diabetes. However, a role for PLXND1 in regional adiposity and insulin resistance is unknown. Here we use in vivo imaging and genetic analysis in zebrafish to show that Plxnd1 regulates body fat distribution and insulin sensitivity. Plxnd1 deficiency in zebrafish induced hyperplastic morphology in visceral adipose tissue (VAT) and reduced lipid storage. In contrast, subcutaneous adipose tissue (SAT) growth and morphology were unaffected, resulting in altered body fat distribution and a reduced VAT:SAT ratio in zebrafish. A VAT-specific role for Plxnd1 appeared conserved in humans, as PLXND1 mRNA was positively associated with hypertrophic morphology in VAT, but not SAT. In zebrafish plxnd1 mutants, the effect on VAT morphology and body fat distribution was dependent on induction of the extracellular matrix protein collagen type V alpha 1 (col5a1). Furthermore, after high-fat feeding, zebrafish plxnd1 mutant VAT was resistant to expansion, and excess lipid was disproportionately deposited in SAT, leading to an even greater exacerbation of altered body fat distribution. Plxnd1-deficient zebrafish were protected from high-fat-diet-induced insulin resistance, and human VAT PLXND1 mRNA was positively associated with type 2 diabetes, suggesting a conserved role for PLXND1 in insulin sensitivity. Together, our findings identify Plxnd1 as a novel regulator of VAT growth, body fat distribution, and insulin sensitivity in both zebrafish and humans.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2558-2567 ◽  
Author(s):  
Masashi Kitazawa ◽  
Mamoru Nagano ◽  
Koh-hei Masumoto ◽  
Yasufumi Shigeyoshi ◽  
Tohru Natsume ◽  
...  

Angiopoietin-like (Angptl)2, a member of the Angptl protein family, is predominantly secreted from adipose tissue and the heart. Here, we demonstrate that the expression of Angptl2 in epididymal adipose tissue of C57BL/6J mice shows pulsatility and circadian rhythmicity and that the rhythmicity was disrupted in high-fat-fed and leptin receptor-deficient diabetic db/db mice with insulin resistance. To investigate whether the reduction in Angptl2 expression was related to the progression of diabetes, we treated db/db mice with recombinant Angptl2 for 4 wk during the peak period of Angptl2 expression in C57BL/6J mice. Angptl2-treated mice showed decreases in plasma glucose, insulin, triglyceride, and fatty acid levels and an increase in plasma adiponectin, a therapeutic regulator of insulin resistance, leading to improvements in glucose tolerance. In cultured adipocytes, recombinant Angptl2 increased adiponectin expression and stimulated insulin sensitivity partially by reducing the levels of tribbles homolog 3, a specific Akt kinase inhibitory protein. Conversely, Angptl2 small interfering RNA reduced adiponectin expression, resulting in insulin resistance. In preadipocytes, treatment with Angptl2 small interfering RNA inhibited differentiation to adipocytes and reduced adiponectin expression. Taken together, our results suggest that replenishment of Angptl2 stimulates insulin sensitivity and improves the type 2 diabetic state.


2016 ◽  
Vol 62 (1) ◽  
pp. 14-21 ◽  
Author(s):  
D.I. Kuzmenko ◽  
S.N. Udintsev ◽  
T.K. Klimentyeva ◽  
V.Yu. Serebrov

Obesity is a leading risk factor of diabetes mellitus type 2, impairments of lipid metabolism and cardiovascular diseases. Dysfunctions of the accumulating weight of the visceral fat are primarily linked to pathogenesis of systemic insulin resistance. The review considers modern views about biochemical mechanisms underlying formation of oxidative stress in adipocytes at obesity, as one of key elements of impairments of their metabolism triggering formation of systemic insulin resistance.


2018 ◽  
Vol 127 (08) ◽  
pp. 550-556 ◽  
Author(s):  
Melina Amor ◽  
Bianca K. Itariu ◽  
Veronica Moreno-Viedma ◽  
Magdalena Keindl ◽  
Alexander Jürets ◽  
...  

AbstractObesity and type 2 diabetes mellitus have reached an epidemic level, thus novel treatment concepts need to be identified. Myostatin, a myokine known for restraining skeletal muscle growth, has been associated with the development of insulin resistance and type 2 diabetes mellitus. Yet, little is known about the regulation of myostatin in human obesity and insulin resistance. We aimed to investigate the regulation of myostatin in obesity and uncover potential associations between myostatin, metabolic markers and insulin resistance/sensitivity indices. Circulating active myostatin concentration was measured in the serum of twenty-eight severely obese non-diabetic patients compared to a sex and age matched lean and overweight control group (n=22). Insulin resistance/sensitivity was assessed in the obese group. Skeletal muscle and adipose tissue specimens from the obese group were collected during elective bariatric surgery. Adipose tissue samples from lean and overweight subjects were collected during elective abdominal surgery. Myostatin concentration was increased in obese compared to lean individuals, while myostatin adipose tissue expression did not differ. Muscle myostatin gene expression strongly correlated with expression of metabolic genes such as IRS1, PGC1α, SREBF1. Circulating myostatin concentration correlated positively with insulin resistance indices and negatively with insulin sensitivity indices. The best correlation was obtained for the oral glucose insulin sensitivity index. Our results point to an interesting correlation between myostatin and insulin resistance/sensitivity in humans, and emphasize its need for further evaluation as a pharmacological target in the prevention and treatment of obesity-associated metabolic complications.


Sign in / Sign up

Export Citation Format

Share Document