scholarly journals Synergistic Effect of Carbamide and Sulfate Reducing Bacteria on Corrosion Behavior of Carbon Steel in Soil

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ximing Li ◽  
Cheng Sun

Synergistic effect of carbamide and sulfate reducing bacteria (SRB) on corrosion behavior of carbon steel was studied in soils with moisture of 20% and 30%, by soil properties measurement, weight loss, polarization curve, and electrochemical impedance spectroscopy. The results show that carbamide decreased the soil redox potential and increased soil pH. In soil without SRB, carbamide made corrosion potential of Q235 steel much more positive and then inhibited corrosion. Meanwhile, in soil with SRB, 0.5 wt% carbamide restrained SRB growth and inhibited biocorrosion of Q235 steel. Corrosion rate of carbon steel decreased in soil with 30% moisture compared with that with 20% moisture.

2011 ◽  
Vol 393-395 ◽  
pp. 1541-1544 ◽  
Author(s):  
Ping Zhao ◽  
Jia Xing Yang ◽  
Dun Yong Du ◽  
Cheng Sun ◽  
Jin Xu

The crevice corrosion behavior of Q235 carbon steel has been studied under the simulated disbonded coating with an aperture of 1.0mm in the soil-extract solution (SES) with and without sulfate-reducing bacteria (SRB) by using the electrochemical impedance spectroscopy (EIS). The surface morphologies of the steel after experiment were observed by scanning electron microscopy (SEM).The results showed that the capacitive arc of the Q235 steel electrode in SRB containing solution is smaller than that in the aseptic solution at the initial stage of test. However, after 19 days, the capacitive arc of the steel in bacteria containing solution becomes bigger than that in the aseptic solution, and corrosion rate of the steel was smaller in the SES with SRB than that without SRB. The degree of the corrosion on the surface of steel Q235 was more severe after 44 days in the SES without SRB than that with SRB. However, corrosion pits were found on the surface of Q235 steel in the SES with SRB.


2011 ◽  
Vol 337 ◽  
pp. 281-284
Author(s):  
Dong Sheng Chen ◽  
Yong Zhang Zhou ◽  
Min Liu ◽  
Kai Wei Guo ◽  
Wu Ji Wei

The corrosion behavior of Q235 steel by Iron Bacteria (IB), Sulfate-reducing Bacteria (SRB) and Total General Bacteria (TGB) in sedimentary water of storage tank from an aromatics plant was investigated mainly by static hanging piece method, potentiodynamic polarization curve and hysteresis loop method. The results showed that the interaction of IB, SRB and TGB accelerated the corrosion rate of Q235 steel. The corrosion current density of Q235 steel electrode in IB, SRB and TGB solution was higher than that in the sterile solution, and the corrosion potential shifted in negative direction. IB, SRB and TGB reduced the corrosion resistance of Q235 steel. The corrosion of Q235 steel in the mixture of IB, SRB and TGB was more serious than in a single microbial system. The presence of IB, SRB and TGB made the pitting occur easily.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan-Yu Cui ◽  
Yong-Xiang Qin ◽  
Qing-Miao Ding ◽  
Yu-Ning Gao

Abstract Background At present, microorganism has been considered as important factors that threaten to buried pipelines with disbonded coatings. Aiming at the problem of unknown corrosion mechanism of sulfate-reducing bacteria (SRB), a series of studies have been carried out in this paper. Spectrophotometer and fluorescent labeling technology are used to study the growth and attachment of SRB in the simulated soil solution. The corrosion behavior of X80 pipeline steel with or without SRB was researched by electrochemical methods such as open circuit potential, dynamic potential polarization curve, and electrochemical impedance spectroscopy. The microscopic morphology of the corrosion products on the surface was observed with a scanning electron microscope (SEM), and the element content of the corrosion products on the surface of the sample after corrosion was observed using X-ray energy spectrum (EDS) analysis. Results The results showed that the growth and reproduction of SRB caused the pH of the soil simulated solution to increase, which may promote the corrosion of X80 steel. In addition, the cathode reaction of X80 steel in a sterile environment is the reduction of H+, and the main corrosion product is iron oxide. When the soil simulation solution contains SRB, the cathodic reaction is controlled by both H+ reduction and sulfide depolarization reactions, and FeS appears in the corrosion products. Conclusion Although the life cycle of SRB is only about 14 days, the corrosion of X80 steel is greatly promoted by SRB, and even causes corrosion perforation, which will bring huge economic losses and serious safety hazards.


2021 ◽  
Vol 225 ◽  
pp. 05001
Author(s):  
Vladimir Vigdorovich ◽  
Liudmila Tsygankova ◽  
Natalia Shel ◽  
Nedal Alshikha

The universality of inhibitors is understood as their ability to inhibit several types of corrosion attack: hydrogen sulfide and carbon dioxide corrosion, hydrogen diffusion into metal, development of sulfate-reducing and other types of bacteria, negative impact on the mechanical properties of metals. Indicators of universalism of new inhibitor have been studied. Producer of the inhibiting compositions is Limited Liability Company «INCORGAZ» (S-Petersburg, Russia). The efficacy of the inhibitor in the concentration of 25 - 200 mg/L has been studied with respect to carbon steel in a highly mineralized chloride medium (pH= 6) and NACE medium (5 g/L NaCl, 0.25 g/L CH3COOH, pH =3.5) containing H2S (50-400 mg/L) and CO2 (1at) separately and together. The bactericidal properties of the inhibitor were studied with respect to sulfate-reducing bacteria in the Postgate medium. The investigations were carried out by the methods of linear polarization resistance, electrochemical impedance spectroscopy, gravimetry, potentiodynamic polarization. The protective effectiveness of the inhibitor reaches 80% in the presence of CO2 and 90% in hydrogen sulphide environments. The inhibitor repeatedly reduces the number of sulfate-reducing bacteria and the production of biogenic hydrogen sulfide and inhibits the diffusion of hydrogen into steel.


Sign in / Sign up

Export Citation Format

Share Document