scholarly journals Fluid Interfaces during Viscous-Dominated Primary Drainage in 2D Micromodels Using Pore-Scale SPH Simulations

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Rakulan Sivanesapillai ◽  
Holger Steeb

We perform pore-scale resolved direct numerical simulations of immiscible two-phase flow in porous media to study the evolution of fluid interfaces. Using a Smoothed-Particle Hydrodynamics approach, we simulate saturation-controlled primary drainage in heterogeneous, partially wettable 2D porous microstructures. While imaging the evolution of fluid interfaces near capillary equilibrium becomes more feasible as fast X-ray tomography techniques mature, imaging methods with suitable temporal resolution for viscous-dominated flow have only recently emerged. In this work, we study viscous fingering and stable displacement processes. During viscous fingering, pore-scale flow fields are reminiscent of Bretherton annular flow, that is, the less viscous phase percolates through the core of a pore-throat forming a hydrodynamic wetting film. Even in simple microstructures wetting films have major impact on the evolution of fluid interfacial area and are observed to give rise to nonnegligible interfacial viscous coupling. Although macroscopically appearing flat, saturation fronts during stable displacement extend over the length of the capillary dispersion zone. While far from the dispersion zone fluid permeation obeys Darcy’s law, the interplay of viscous and capillary forces is found to render fluid flow within complex. Here we show that the characteristic length scale of the capillary dispersion zone increases with the heterogeneity of the microstructure.

2013 ◽  
Vol 62 ◽  
pp. 356-369 ◽  
Author(s):  
U.C. Bandara ◽  
A.M. Tartakovsky ◽  
M. Oostrom ◽  
B.J. Palmer ◽  
J. Grate ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5751
Author(s):  
Seyed Ali Mousavi Tayebi ◽  
Saeid Moussavi Tayyebi ◽  
Manuel Pastor

Due to the growing populations in areas at high risk of natural disasters, hazard and risk assessments of landslides have attracted significant attention from researchers worldwide. In order to assess potential risks and design possible countermeasures, it is necessary to have a better understanding of this phenomenon and its mechanism. As a result, the prediction of landslide evolution using continuum dynamic modeling implemented in advanced simulation tools is becoming more important. We analyzed a depth-integrated, two-phase model implemented in two different sets of code to stimulate rapid landslides, such as debris flows and rock avalanches. The first set of code, r.avaflow, represents a GIS-based computational framework and employs the NOC-TVD numerical scheme. The second set of code, GeoFlow-SPH, is based on the mesh-free numerical method of smoothed particle hydrodynamics (SPH) with the capability of describing pore pressure’s evolution along the vertical distribution of flowing mass. Two real cases of an Acheron rock avalanche and Sham Tseng San Tsuen debris flow were used with the best fit values of geotechnical parameters obtained in the prior modeling to investigate the capabilities of the sets of code. Comparison of the results evidenced that both sets of code were capable of properly reproducing the run-out distance, deposition thickness, and deposition shape in the benchmark exercises. However, the values of maximum propagation velocities and thickness were considerably different, suggesting that using more than one set of simulation code allows us to predict more accurately the possible scenarios and design more effective countermeasures.


Author(s):  
Mosayeb Shams ◽  
Kamaljit Singh ◽  
Branko Bijeljic ◽  
Martin J. Blunt

AbstractThis study focuses on direct numerical simulation of imbibition, displacement of the non-wetting phase by the wetting phase, through water-wet carbonate rocks. We simulate multiphase flow in a limestone and compare our results with high-resolution synchrotron X-ray images of displacement previously published in the literature by Singh et al. (Sci Rep 7:5192, 2017). We use the results to interpret the observed displacement events that cannot be described using conventional metrics such as pore-to-throat aspect ratio. We show that the complex geometry of porous media can dictate a curvature balance that prevents snap-off from happening in spite of favourable large aspect ratios. We also show that pinned fluid-fluid-solid contact lines can lead to snap-off of small ganglia on pore walls; we propose that this pinning is caused by sub-resolution roughness on scales of less than a micron. Our numerical results show that even in water-wet porous media, we need to allow pinned contacts in place to reproduce experimental results.


Author(s):  
Jennifer Niessner ◽  
S. Majid Hassanizadeh ◽  
Dustin Crandall

We present a new numerical model for macro-scale two-phase flow in porous media which is based on a physically consistent theory of multi-phase flow. The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid–fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study.


2019 ◽  
Vol 31 (10) ◽  
pp. 103303 ◽  
Author(s):  
Erwan Bertevas ◽  
Thien Tran-Duc ◽  
Khoa Le-Cao ◽  
Boo Cheong Khoo ◽  
Nhan Phan-Thien

2016 ◽  
Vol 52 (3) ◽  
pp. 2194-2205 ◽  
Author(s):  
S. Schlüter ◽  
S. Berg ◽  
M. Rücker ◽  
R. T. Armstrong ◽  
H.-J. Vogel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document