scholarly journals Novel Gysel Power Dividers with Negative Group Delay Characteristics

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zihui Zhu ◽  
Zhongbao Wang ◽  
Jianhao Zhou ◽  
Te Shao ◽  
Shaojun Fang ◽  
...  

A novel Gysel power divider with negative group delay (NGD), good matching, and low insertion loss is proposed. Resistors connected with short-circuited coupled lines (RCSCL) are shunted at output ports of the Gysel power divider to obtain NGD characteristics, and another resistor is shunted at the input port to realize perfect input and output matching. To verify the proposed structure, an NGD Gysel power divider is designed and fabricated. At the center frequency of 1.0 GHz, the measured NGD times for different output ports are −1.94 ns and −1.97 ns, the input/output port return loss is greater than 38 dB, the insertion loss is less than 8.3 dB, and the isolation between output ports is higher than 41 dB. To enhance the NGD bandwidth, two RCSCL networks having slightly different center frequencies are connected in parallel, which provides wider bandwidth with good input matching characteristics.

2020 ◽  
Vol 20 (1) ◽  
pp. 73-79
Author(s):  
Girdhari Chaudhary ◽  
Yongchae Jeong

This paper presents a design of a transmissive-type, low insertion loss (IL) negative group delay (NGD) circuit with a reconfigurable NGD. The proposed circuit consists of a series transmission lines (TLs) and shunt short-circuited coupled lines where an isolation port is terminated with a parasitic compensated PIN diode. Analytical design equations are derived to obtain the circuit parameters for the predefined NGD and IL. The low IL can be achieved because of the very high characteristic impedance of the short-circuited coupled lines. The TL terminated with a PIN diode is used to achieve the constant center frequency of reconfigurable NGD circuit. For experimental validation, the NGD circuit is designed and fabricated at a center frequency (<i>f</i><sub>0</sub>) of 2.14 GHz. In the measurement, the NGD varies from -0.5 ns to -2 ns with an IL variation of 2.08 to 3.60 dB at <i>f</i><sub>0</sub> = 2.14 GHz. The NGD bandwidth (bandwidth of GD less than 0 ns) varies from 90 MHz to 50 MHz. The minimum input/output return losses are higher than 10 dB for the overall tuning range.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arun Kumar Gande ◽  
Souma Guha Mallick ◽  
Bijit Biswas ◽  
Sayan Chatterjee ◽  
Dipak Ranjan Poddar

Purpose This paper aims to present a compact, broadband substrate integrated waveguide (SIW) three-way power divider with improved isolation based on six-port SIW coupler. Design/methodology/approach The power coupling among the three output ports occurs due to short openings in the narrow walls of the central SIW channel. Performance improvement in the isolation and return loss among ports is achieved using matching posts placed at the input and output ends of the coupling region. This enhances the coupling between TE10 and TE30 modes. The input matching ports enhance the return loss, whereas the isolation is alleviated by both the input and output matching posts. The bandwidth enhancement is achieved by optimizing the outer SIW channel widths. Findings The measured fractional bandwidth of 27.3% with over 15 dB of isolation and return loss is achieved. The coupling length is 1.55 λg at the centre frequency. The power divider achieves better than 15 dB isolation between non-adjacent output ports. The measured reflection and isolation coefficients are in close agreement with simulated results over 8.2 to 10.8 GHz. Practical implications Isolation between the adjacent and non-adjacent ports is an important parameter as the reflections from these ports will interfere with signals from other ports reducing the fractional bandwidth of the power divider and affecting the overall performance of the transmitters and receivers. Originality/value The authors present the enhancement of isolation between the output non-adjacent ports by optimizing the SIW channel width and matching post in the coupling region to reduce the reflected signals from non-adjacent ports entering into other ports. To the author’s knowledge, this is the only SIW three-way power divider paper showing non-adjacent port isolation among six-port couplers based three-way power dividers.


Author(s):  
Yuwei Meng ◽  
Zhongbao Wang ◽  
Zihui Zhu ◽  
Shaojun Fang ◽  
Hongmei Liu

2017 ◽  
Vol 9 (10) ◽  
pp. 1931-1936 ◽  
Author(s):  
Kaijun Song ◽  
Yifang Zhou ◽  
Maoyu Fan ◽  
Yu Zhu ◽  
Yong Fan

A wide-stopband bandpass-filtering power divider with high-frequency selectivity has been proposed in this paper. The input and output feeding lines and eight 1/4 wavelength resonators are used to realize the signal transmission. In order to obtain good frequency selectivity, source-load coupling transmission path is used to generate transmission zeros near the passband. A four-way power divider with bandpass-filtering response and high-frequency selectivity is designed, fabricated, and measured. The measured results agree with the simulated ones closely in the desirable frequency range. The measured center frequency of the power divider is 2.38 GHz with input return loss of 31.2 dB, while the measured insertion loss is about 1 dB (not including ideal 6 dB four-way power dividing insertion loss). Moreover, the measured 3-dB bandwidth is 12% and the measured stopband attenuation is >15 dB from 2.59 to 7.7 GHz. In addition, two transmission zeros of 1.9 and 2.8 GHz are located near the passband. The measured output isolations are all >15.7 dB.


Sign in / Sign up

Export Citation Format

Share Document