scholarly journals Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ahmed M. Ammar ◽  
Hemdan S. H. Mohamed ◽  
Moataz M. K. Yousef ◽  
Ghada M. Abdel-Hafez ◽  
Ahmed S. Hassanien ◽  
...  

Here, three natural dyes were extracted from different fruits and leaves and used as sensitizers for dye-sensitized solar cells (DSSCs). Chlorophyll was extracted from spinach leaves using acetone as a solvent. Anthocyanin was extracted from red cabbage and onion peels using water. Different characterizations for the prepared natural dyes were conducted including UV-vis absorption, FTIR, and steady-state/time-resolved photoluminescence spectroscopy. Various DSSCs based on the extracted dyes were fabricated. The degradation in the power conversion efficiencies was monitored over a week. The effect of the TiO2 mesoporous layers on the efficiency was also studied. The interfaces between the natural dyes and the TiO2 layers were investigated using electrochemical impedance spectroscopy.

2021 ◽  
Vol 23 (10) ◽  
pp. 6182-6189
Author(s):  
Dariusz M. Niedzwiedzki

Photophysical properties of N719 and Z907, benchmark Ru-dyes used as sensitizers in dye-sensitized solar cells, were studied by static and time-resolved optical spectroscopy at room temperature and 160 K.


Optik ◽  
2021 ◽  
pp. 167331
Author(s):  
Shalini Singh ◽  
Ishwar Chandra Maurya ◽  
Shubham Sharma ◽  
Shiva Prakash Singh Kushwaha ◽  
Pankaj Srivastava ◽  
...  

2013 ◽  
Vol 699 ◽  
pp. 22-27
Author(s):  
Xiao Peng ◽  
Bao Zhang ◽  
Shu Xian Meng ◽  
Xiang Mei Yu ◽  
Zhe Zeng ◽  
...  

A multilayer TiO2 film featured with gradual scattering structure was developed and used as photoelectrode for dye-sensitized solar cells. This structure of film consists of P25 nanoparticles and TiO2 aggregate which was synthesized by micro-emulsion method as scattering centers The scattering centers were deposited by gradually increasing the amount from the film’s bottom to its top. The special films were used for the studies on the photovoltaic performance of N719 and Zn-3, and their photoelectric conversion efficiencies were 7.34% and 4.04%, respectively. Furthermore, more improvement of the conversion efficiency is realized for Zn-3 than for N719 by using our newly developed multilayer films as photoelectrode compared with ordinary photoelectrode.


2021 ◽  
Author(s):  
Indriana Kartini ◽  
Adhi Dwi Hatmanto

This article will discuss natural dyes’ role, from colouring the cotton fabrics with some functionality to harvesting sunlight in the dye-sensitized solar cells. Natural dye colourants are identical to the low light- and wash-fastness. Therefore, an approach to improving the colourant’s physical properties is necessary. Colouring steps employing silica nanosol and chitosan will be presented. The first part will be these multifunctional natural dye coatings on cotton fabrics. Then, functionality such as hydrophobic surfaces natural dyed cotton fabrics will be discussed. Natural dyes are also potential for electronic application, such as solar cells. So, the second part will present natural dyes as the photosensitizers for solar cells. The dyes are adsorbed on a semiconductor oxide surface, such as TiO2 as the photoanode. Electrochemical study to explore natural dyes’ potential as sensitizer will be discussed, for example, natural dyes for Batik. Ideas in improving solar cell efficiency will be discussed by altering the photoanode’s morphology. The ideas to couple the natural dyes with an organic–inorganic hybrid of perovskite and carbon dots are then envisaged.


2021 ◽  
Author(s):  
T Sumathi ◽  
Sonia A Fredricka ◽  
G Deepa

Abstract In the last two decades, dye sensitized solar cells (DSSCs) have gotten a lot of attention from researchers and have progressed quickly. To promote commercialization and large-scale application of DSSCs, their efficiency should be increased. This paper details significant advancements in advanced NiMoS3/BC nanocomposites for improving photoanodes and DSSC conversion efficiencies. The fabricated electrode samples were characterized by XRD, SEM, TEM, Raman, UV, PL and BET to explore the structural, morphological and optical properties. A significant reduction band gap with enhanced light absorption and rapid prevention of electron hole pair was explored by UV-DRS and PL studies. The photocurrent density-voltage (J-V) and IPCE characteristics were analyzed for assembled solar cell. The NiMoS3/BC (NMSC5) nanocomposite DSSC showed a PCE of 8.85%, far higher than that of the NiMoS3 (2.45%) and a PCE value equivalent to Pt CE (4.79 %). The enhanced PCE of the proposed electrodes are also discussed in scientifically.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Braden Bills ◽  
Mariyappan Shanmugam ◽  
Mahdi Farrokh Baroughi ◽  
David Galipeau

AbstractThe performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the porous titanium oxide (TiO2) nanoparticles back into the electrolyte solution, which occurs almost exclusively through the interface. This and the fact that DSSCs have a very large interfacial area makes their performance greatly dependant on the density and activity of TiO2 surface states. Thus, effectively engineering the TiO2/dye/electrolyte interface to reduce carrier losses is critically important for improving the photovoltaic performance of the solar cell. Atomic layer deposition (ALD), which uses high purity gas precursors that can rapidly diffuse through the porous network, was used to grow a conformal and controllable aluminum oxide (Al2O3) and hafnium oxide (HfO2) ultra thin layer on the TiO2 surface. The effects of this interfacial treatment on the DSSC performance was studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy (EIS) measurements.


Sign in / Sign up

Export Citation Format

Share Document