scholarly journals Assessment of Intratumoral Doxorubicin Penetration after Mild Hyperthermia-Mediated Release from Thermosensitive Liposomes

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Marc Derieppe ◽  
Jean-Michel Escoffre ◽  
Baudouin Denis de Senneville ◽  
Quincy van Houtum ◽  
Angelique Barten-van Rijbroek ◽  
...  

In solid tumors, rapid local intravascular release of anticancer agents, e.g., doxorubicin (DOX), from thermosensitive liposomes (TSLs) can be an option to overcome poor extravasation of drug nanocarriers. The driving force of DOX penetration is the drug concentration gradient between the vascular compartment and the tumor interstitium. In this feasibility study, we used fibered confocal fluorescence microscopy (FCFM) to monitor in real-time DOX penetration in the interstitium of a subcutaneous tumor after its intravascular release from TSLs, Thermodox®. Cell uptake kinetics of the released DOX was quantified, along with an in-depth assessment of released-DOX penetration using an evolution model. A subcutaneous rat R1 rhabdomyosarcoma xenograft was used. The rodent was positioned in a setup including a water bath, and FCFM identification of functional vessels in the tumor tissue was applied based on AngioSense. The tumor-bearing leg was immersed in the 43°C water for preheating, and TSLs were injected intravenously. Real-time monitoring of intratumoral (i.t.) DOX penetration could be performed, and it showed the progressing DOX wave front via its native fluorescence, labeling successively all cell nuclei. Cell uptake rates (1/k) of 3 minutes were found (n=241  cells), and a released-DOX penetration in the range of 2500 µm2·s−1 was found in the tumor extravascular space. This study also showed that not all vessels, identified as functional based on AngioSense, gave rise to local DOX penetration.

1988 ◽  
Vol 20 (11-12) ◽  
pp. 167-173 ◽  
Author(s):  
S. E. Strand ◽  
R. M. Seamons ◽  
M. D. Bjelland ◽  
H. D. Stensel

The kinetics of methane-oxidizing bioreactors for the degradation of toxic organics are modeled. Calculations of the fluxes of methane and toxic chlorinated hydrocarbons were made using a biofilm model. The model simulated the effects of competition by toxics and mediane on their enzymatic oxidation by the methane monooxygenase. Dual-competitive-substrate/diffusion kinetics were used to model biofilm co-metabolism, integrating equations of the following form:where S1 and S2 are the local concentrations of methane and toxic compound, respectively, and r and K are the maximum uptake rates and Monod coefficients, and x is the distance into the biofilm.


2019 ◽  
Vol 15 (5) ◽  
pp. 567-574
Author(s):  
Huck Jun Hong ◽  
Suw Young Ly

Background: Tetrodotoxin (TTX) is a biosynthesized neurotoxin that exhibits powerful anticancer and analgesic abilities by inhibiting voltage-gated sodium channels that are crucial for cancer metastasis and pain delivery. However, for the toxin’s future medical applications to come true, accurate, inexpensive, and real-time in vivo detection of TTX remains as a fundamental step. Methods: In this study, highly purified TTX extracted from organs of Takifugu rubripes was injected and detected in vivo of mouse organs (liver, heart, and intestines) using Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) for the first time. In vivo detection of TTX was performed with auxiliary, reference, and working herring sperm DNA-immobilized carbon nanotube sensor systems. Results: DNA-immobilization and optimization of amplitude (V), stripping time (sec), increment (mV), and frequency (Hz) parameters for utilized sensors amplified detected peak currents, while highly sensitive in vivo detection limits, 3.43 µg L-1 for CV and 1.21 µg L-1 for SWASV, were attained. Developed sensors herein were confirmed to be more sensitive and selective than conventional graphite rodelectrodes modified likewise. A linear relationship was observed between injected TTX concentration and anodic spike peak height. Microscopic examination displayed coagulation and abnormalities in mouse organs, confirming the powerful neurotoxicity of extracted TTX. Conclusion: These results established the diagnostic measures for TTX detection regarding in vivo application of neurotoxin-deviated anticancer agents and analgesics, as well as TTX from food poisoning and environmental contamination.


2010 ◽  
Vol 110 (6) ◽  
pp. 694-700 ◽  
Author(s):  
Arkady Bitler ◽  
Naama Lev ◽  
Yael Fridmann-Sirkis ◽  
Lior Blank ◽  
Sidney R. Cohen ◽  
...  

2016 ◽  
Vol 18 (42) ◽  
pp. 29435-29446 ◽  
Author(s):  
Zhuoran Wang ◽  
Samir Elouatik ◽  
George P. Demopoulos

The in situ Raman monitored annealing method is developed in this work to provide real-time information on phase formation and crystallinity evolution of kesterite deposited on a TiO2 mesoscopic scaffold.


2016 ◽  
Vol 1857 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Nikolai P. Belevich ◽  
Yulia V. Bertsova ◽  
Marina L. Verkhovskaya ◽  
Alexander A. Baykov ◽  
Alexander V. Bogachev

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Shicai Xu ◽  
Jian Zhan ◽  
Baoyuan Man ◽  
Shouzhen Jiang ◽  
Weiwei Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document