scholarly journals Entropy-Based Block Scrambling Image Encryption Using DES Structure and Chaotic Systems

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xuncai Zhang ◽  
Lingfei Wang ◽  
Guangzhao Cui ◽  
Ying Niu

Traditional encryption algorithms are inefficient when applied to image encryption because image data have the characteristics of large data sizes and strong correlations between adjacent pixels. The shortcomings of the traditional Data encryption standard (DES) encryption algorithm when applied to image encryption are analyzed, and a new image encryption algorithm based on the traditional DES encryption algorithm model, chaotic systems, DNA computing, and select cipher-text output is proposed. Select cipher-text output selects cipher image with the biggest entropy, and it can increase the randomness of cipher image and reduce the risk of encryption system being broken down. This algorithm overcomes the shortcomings of high computational complexity and inconvenient key management that the traditional text encryption algorithm has when applied to image encryption. The experimental results show that the security of this algorithm is verified by analyzing the information entropy, image correlation of adjacent pixels and other indexes. At the same time, this algorithm passes the noise attack test and the occlusion attack test, so it can resist common attacks.

Author(s):  
DHANYA B. NAIR ◽  
RUKSANA MAIDEEN

In order to protect valuable data from undesirable readers or against illegal reproduction and modifications, there have been various data encryption techniques. Many methods have been developed to perform image encryption. The use of chaotic map for image encryption is very effective, since it increase the security, due to its random behavior. The highly unpredictable and random-look nature of chaotic signals is the most attractive feature of deterministic chaotic systems that may lead to novel (engineering) applications. This paper introduces a new cascaded structure of chaotic encryption scheme with RC-5 algorithm. In this paper „Triple key‟ is used to encrypt and decrypt the data. Three different parameters which are decided by user are used to scramble the image data and so hackers get many difficulties to hack the data hence providing more security. Cascading RC-5 with triple key chaotic image encryption increases the security and the histogram can be made more uniform. For simulation MATLAB software is used. The experimental results shows that algorithm successfully perform the cryptography and highly sensitive to the small changes in key parameters.


2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Jiming Zheng ◽  
Zheng Luo ◽  
Zhirui Tang

In this paper, an improved two-dimensional logistic-sine coupling map (N2D-LSCM) and an improved Henon map (NHenon) are proposed. Furthermore, by combining N2D-LSCM and NHenon map, an image encryption algorithm is proposed based on these two chaotic systems and DNA coding. The chaotic sequences generated by N2D-LSCM are used as the parameters of NHenon. In the scrambling stage, DNA encoding is carried out for pixels after scrambling by two chaotic sequences generated by N2D-LSCM; in the stage of diffusion, DNA random coding acts on random matrix obtained by two chaotic sequences generated by NHenon, and DNA XOR operation is carried out with the image obtained in the scrambling stage to diffuse. Compared with other 2D map for image encryption algorithm, this algorithm exhibits good security and holds high efficiency.


2019 ◽  
Vol 9 (4) ◽  
pp. 781 ◽  
Author(s):  
Xiong Wang ◽  
Ünal Çavuşoğlu ◽  
Sezgin Kacar ◽  
Akif Akgul ◽  
Viet-Thanh Pham ◽  
...  

Chaotic systems without equilibrium are of interest because they are the systems with hidden attractors. A nonequilibrium system with chaos is introduced in this work. Chaotic behavior of the system is verified by phase portraits, Lyapunov exponents, and entropy. We have implemented a real electronic circuit of the system and reported experimental results. By using this new chaotic system, we have constructed S-boxes which are applied to propose a novel image encryption algorithm. In the designed encryption algorithm, three S-boxes with strong cryptographic properties are used for the sub-byte operation. Particularly, the S-box for the sub-byte process is selected randomly. In addition, performance analyses of S-boxes and security analyses of the encryption processes have been presented.


2021 ◽  
Author(s):  
paavni gaur

Abstract An Image Encryption and Decryption Using AES (Advance Encryption Standard) Algorithm is proposed in the project. Due to increasing use of image in various field, it is very important to protect the confidential image data from unauthorized access. The design uses the iterative approach with block size of 128 bit and key size of 128, 192 or 256 bit. The numbers of round for key size of 256 bits is 14, for 128 bits is 10 and for 192 bits is 12. As secret key increases the security as well as complexity of the cryptography algorithms. In this paper , an algorithm in which the image is an input to AES Encryption to get the encrypted image and then input it to AES Decryption to get the original image is proposed and explained which will further be implemented by me.The paper shows the study in which a system could be used for effective image data encryption and key generation in diversified application areas, where sensitive and confidential data needs to be transmitted along with the image.


2020 ◽  
Vol 64 (4) ◽  
pp. 40413-1-40413-8
Author(s):  
Zhuang-hao Si ◽  
Wei Wei ◽  
Bi-song Li ◽  
Wei-jie Feng

Abstract To explore the DNA image encryption method based on the Logistic‐sine system and the fractional-order chaos stability theory, a fractional-order fuzzy differential equation is first introduced to construct a chaotic synchronization system. Then the green, blue, and red primary color matrix is established to design new DNA image encryption, and the encryption process is explained. Next, a data encryption algorithm and an advanced encryption algorithm are introduced to perform simulation experiments on the MATLAB 2014 software platform. It is found that the images encrypted by the new algorithm all exhibit striped snowflakes, and after decryption, it is almost the same as the original image. The histogram of the image encrypted by the new algorithm is flat, which is very different from the original image histogram. The average pixel change rate of the image encrypted by the new algorithm is 99.6267%, and the average change intensity reaches 33.5183%. The average information entropy of the image encrypted by the new algorithm is 7.9624, which is close to the upper limit of 8. The calculation time and occupied space of the new algorithm are less than those of the data encryption algorithm and the advanced encryption algorithm. This result shows that the DNA image encryption algorithm based on the Logistic‐sine system and the fractional-order chaos stability theory has excellent performance and can provide a certain theoretical basis for research in the field of digital image encryption.


Sign in / Sign up

Export Citation Format

Share Document