scholarly journals Energy-Efficient Computation Offloading and Transmit Power Allocation Scheme for Mobile Edge Computing

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaohui Gu ◽  
Li Jin ◽  
Nan Zhao ◽  
Guoan Zhang

Mobile edge computing (MEC) is considered a promising technique that prolongs battery life and enhances the computation capacity of mobile devices (MDs) by offloading computation-intensive tasks to the resource-rich cloud located at the edges of mobile networks. In this study, the problem of energy-efficient computation offloading with guaranteed performance in multiuser MEC systems was investigated. Given that MDs typically seek lower energy consumption and improve the performance of computing tasks, we provide an energy-efficient computation offloading and transmit power allocation scheme that reduces energy consumption and completion time. We formulate the energy efficiency cost minimization problem, which satisfies the completion time deadline constraint of MDs in an MEC system. In addition, the corresponding Karush–Kuhn–Tucker conditions are applied to solve the optimization problem, and a new algorithm comprising the computation offloading policy and transmission power allocation is presented. Numerical results demonstrate that our proposed scheme, with the optimal computation offloading policy and adapted transmission power for MDs, outperforms local computing and full offloading methods in terms of energy consumption and completion delay. Consequently, our proposed system could help overcome the restrictions on computation resources and battery life of mobile devices to meet the requirements of new applications.

Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 856-874
Author(s):  
S. Anoop ◽  
Dr.J. Amar Pratap Singh

Mobile technologies is evolving so rapidly in every aspect, utilizing every single resource in the form of applications which creates advancement in day to day life. This technological advancements overcomes the traditional computing methods which increases communication delay, energy consumption for mobile devices. In today’s world, Mobile Edge Computing is evolving as a scenario for improving in these limitations so as to provide better output to end users. This paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks done using the LSTM algorithm. A strategy for computation offloading based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling based on a reinforcement learning routing algorithm help to optimize the edge computing offloading model. Experimental results show that our proposed algorithm Intelligent Energy Efficient Offloading Algorithm (IEEOA), can efficiently decrease total task delay and energy consumption, and bring much security to the devices due to the firewall nature of LSTM.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Muhammad Arif ◽  
F. Ajesh ◽  
Shermin Shamsudheen ◽  
Muhammad Shahzad

The use of application media, gamming, entertainment, and healthcare engineering has expanded as a result of the rapid growth of mobile technologies. This technology overcomes the traditional computing methods in terms of communication delay and energy consumption, thereby providing high reliability and bandwidth for devices. In today’s world, mobile edge computing is improving in various forms so as to provide better output and there is no room for simple computing architecture for MEC. So, this paper proposed a secure and energy-efficient computational offloading scheme using LSTM. The prediction of the computational tasks is done using the LSTM algorithm, the strategy for computation offloading of mobile devices is based on the prediction of tasks, and the migration of tasks for the scheme of edge cloud scheduling helps to optimize the edge computing offloading model. Experiments show that our proposed architecture, which consists of an LSTM-based offloading technique and routing (LSTMOTR) algorithm, can efficiently decrease total task delay with growing data and subtasks, reduce energy consumption, and bring much security to the devices due to the firewall nature of LSTM.


2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110353
Author(s):  
Mohammad Babar ◽  
Muhammad Sohail Khan

Edge computing brings down storage, computation, and communication services from the cloud server to the network edge, resulting in low latency and high availability. The Internet of things (IoT) devices are resource-constrained, unable to process compute-intensive tasks. The convergence of edge computing and IoT with computation offloading offers a feasible solution in terms of performance. Besides these, computation offload saves energy, reduces computation time, and extends the battery life of resource constrain IoT devices. However, edge computing faces the scalability problem, when IoT devices in large numbers approach edge for computation offloading requests. This research article presents a three-tier energy-efficient framework to address the scalability issue in edge computing. We introduced an energy-efficient recursive clustering technique at the IoT layer that prioritizes the tasks based on weight. Each selected task with the highest weight value offloads to the edge server for execution. A lightweight client–server architecture affirms to reduce the computation offloading overhead. The proposed energy-efficient framework for IoT algorithm makes efficient computation offload decisions while considering energy and latency constraints. The energy-efficient framework minimizes the energy consumption of IoT devices, decreases computation time and computation overhead, and scales the edge server. Numerical results show that the proposed framework satisfies the quality of service requirements of both delay-sensitive and delay-tolerant applications by minimizing energy and increasing the lifetime of devices.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1010 ◽  
Author(s):  
Prince Waqas Khan ◽  
Khizar Abbas ◽  
Hadil Shaiba ◽  
Ammar Muthanna ◽  
Abdelrahman Abuarqoub ◽  
...  

Conserving energy resources and enhancing computation capability have been the key design challenges in the era of the Internet of Things (IoT). The recent development of energy harvesting (EH) and Mobile Edge Computing (MEC) technologies have been recognized as promising techniques for tackling such challenges. Computation offloading enables executing the heavy computation workloads at the powerful MEC servers. Hence, the quality of computation experience, for example, the execution latency, could be significantly improved. In a situation where mobile devices can move arbitrarily and having multi servers for offloading, computation offloading strategies are facing new challenges. The competition of resource allocation and server selection becomes high in such environments. In this paper, an optimized computation offloading algorithm that is based on integer linear optimization is proposed. The algorithm allows choosing the execution mode among local execution, offloading execution, and task dropping for each mobile device. The proposed system is based on an improved computing strategy that is also energy efficient. Mobile devices, including energy harvesting (EH) devices, are considered for simulation purposes. Simulation results illustrate that the energy level starts from 0.979 % and gradually decreases to 0.87 % . Therefore, the proposed algorithm can trade-off the energy of computational offloading tasks efficiently.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1105 ◽  
Author(s):  
Fagui Liu ◽  
Zhenxi Huang ◽  
Liangming Wang

As an emerging and promising computing paradigm in the Internet of things (IoT),edge computing can significantly reduce energy consumption and enhance computation capabilityfor resource-constrained IoT devices. Computation offloading has recently received considerableattention in edge computing. Many existing studies have investigated the computation offloadingproblem with independent computing tasks. However, due to the inter-task dependency in variousdevices that commonly happens in IoT systems, achieving energy-efficient computation offloadingdecisions remains a challengeable problem. In this paper, a cloud-assisted edge computing frameworkwith a three-tier network in an IoT environment is introduced. In this framework, we first formulatedan energy consumption minimization problem as a mixed integer programming problem consideringtwo constraints, the task-dependency requirement and the completion time deadline of the IoT service.To address this problem, we then proposed an Energy-efficient Collaborative Task ComputationOffloading (ECTCO) algorithm based on a semidefinite relaxation and stochastic mapping approachto obtain strategies of tasks computation offloading for IoT sensors. Simulation results demonstratedthat the cloud-assisted edge computing framework was feasible and the proposed ECTCO algorithmcould effectively reduce the energy cost of IoT sensors.


Sign in / Sign up

Export Citation Format

Share Document