scholarly journals Discrete Element Method- (DEM-) Based Study on the Wear Mechanism and Wear Regularity in Scraper Conveyor Chutes

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Rui Xia ◽  
Xuewen Wang ◽  
Bo Li ◽  
Xing Wei ◽  
Zhaojian Yang

The scraper conveyor is the key conveying equipment for fully mechanized coal mining. Wear failure of the chute is the main form of failure of the scraper conveyor. In this study, the discrete element method (DEM) was combined with the wear model. The wear mechanism and wear regularity of the chute were explored by tracking the changes in the position of coal particles during the wear process. After the validation of wear simulation, a wear test of coal for different intrinsic parameters was designed. In one wear cycle, the three-body wear was about 32.84 times that of the two-body wear. In the research range, the wear of the scraper conveyor chute increased with the increase of Poisson’s ratio, shear modulus, and density of the coal. The shear modulus showed remarkable effect on the wear of the chute, followed by Poisson’s ratio and density. There existed a linear relationship between the shear modulus and wear (R2 = 0.8232). This study is expected to be used to predict the wear of the scraper conveyor chute and provide a theoretical basis for the applicability of the chute in different mines.

Author(s):  
Rahav Gowtham Venkateswaran ◽  
Ursula Kowalsky ◽  
Dieter Dinkler

AbstractRecently, the discrete element method is increasingly being used for describing the behaviour of isotropic linear elastic materials. However, the common bond models employed to describe the interaction between particles restrict the range of Poisson’s ratio that can be represented. In this paper, to overcome the restriction, a modified bond model that includes the coupling of shear strain energy of neighbouring bonds is proposed. The coupling is described by a multi-bond term that enables the model to distinguish between shear deformations and rigid-body rotations. The positive definiteness of the strain energy function of the modified bond model is verified. To validate the model, uniaxial tension, pure shear and pure bending tests are performed. Comparison of the particle displacements with continuum mechanics solution demonstrates the ability of the model to describe the behaviour of isotropic linear elastic material for values of Poisson’s ratio in the range $$0 \le \nu < 0.5$$ 0 ≤ ν < 0.5 .


Author(s):  
Rui Xia ◽  
Xuewen Wang ◽  
Bo Li ◽  
Xing Wei ◽  
Zhaojian Yang

During long-term operation, the scraper conveyor chute is seriously attrited by the friction of coal, gangue, and scraper chain. In this study, the discrete element method was applied to establish the bulk coal–scraper conveyor interaction analysis model to predict the wear of a scraper conveyor chute during the transporting process. The wear of the chute was investigated under various working conditions and bulk coal characteristics. Results indicated that the chute wear has a negative correlation with the laying angle of the scraper conveyor and increased with the chain speed. The wear was more severe as the increasing of gangue content, hardness, and size of the coal particles. In addition, the wear degree in different sections on the chute was predicted. Results showed that the section near the coal falling point underwent more intense collisions and impact and, thus, the wear was more serious at this location. The wear loss decreased with the increasing distance away from this point. This research can be used for predicting the wear of a scraper conveyor working under different mines. What’s more, the wear-resistant treatment can be applied on the particular areas according to the mine conditions based on this study.


2021 ◽  
pp. 014459872110135
Author(s):  
Zhen Tian ◽  
Shuangxi Jing ◽  
Lijuan Zhao ◽  
Wei Liu ◽  
Shan Gao

The drum is the working mechanism of the coal shearer, and the coal loading performance of the drum is very important for the efficient and safe production of coal mine. In order to study the coal loading performance of the shearer drum, a discrete element model of coupling the drum and coal wall was established by combining the results of the coal property determination and the discrete element method. The movement of coal particles and the mass distribution in different areas were obtained, and the coal particle velocity and coal loading rate were analyzed under the conditions of different helix angles, rotation speeds, traction speeds and cutting depths. The results show that with the increase of helix angle, the coal loading first increases and then decreases; with the increase of cutting depth and traction speed, the coal loading rate decreases; the increase of rotation speed can improve the coal loading performance of drum to a certain extent. The research results show that the discrete element numerical simulation can accurately reflect the coal loading process of the shearer drum, which provides a more convenient, fast and low-cost method for the structural design of shearer drum and the improvement of coal loading performance.


Author(s):  
Xuewen Wang ◽  
Bo Li ◽  
Shaowei Wang ◽  
Zhaojian Yang ◽  
Liu Cai

Scraper conveyor is the main equipment for underground coal transportation, and its high-efficiency and smooth operation is of great significance to safety production. This study simulated the process of transporting bulk coal by the scraper conveyor using the discrete element method. Transporting efficiency of scraper conveyor affected by the chain speed, static frictional coefficient, particle size, and laying angle was studied. Then the relationship between the chain speed, static frictional coefficient and the chute wear was explored. The stress and deformation characteristics of the chute during the transportation were studied by coupling the discrete element method and finite element method. Results showed that the mass flow rate changed significantly with the chain speed and static frictional coefficient, while it varied slightly with the change of particle size and laying angle; the higher chain speed and larger bulk coal led to more serious wear of the chute, and large stress mainly concentrated at the direct contact area and the area under the impact load from the bulk coal. Therefore, when designing the chute structure, it is necessary to ensure the wear resistance and strength of the contact area on the chute. The results could provide a theoretical basis for structural optimization of scraper conveyor.


2009 ◽  
Vol 76-78 ◽  
pp. 719-724 ◽  
Author(s):  
Yuan Qiang Tan ◽  
Sheng Qiang Jiang ◽  
Cai Li ◽  
Dong Min Yang ◽  
Gao Feng Zhang ◽  
...  

The mechanical models formed by packed circular discrete elements were used to investigate the mechanical properties of Si3N4. In these models, the distribution of elements is random in the specified region, and the average radius of elements is 6m. The main mechanical properties investigated here are Young’s modulus, compressive strength, Poisson’s ratio, fracture toughness and bending strength. Some numerical simulation analysis of the size effect of the mechanical properties in these discrete element models were carried out. The simulation results suggest that there is no obvious size effect for Young’s modulus, compressive strength and Poisson’s ratio in these discrete element models. However, for bending strength, when the number of elements in model is less than about 9000, there exists obvious size effect, with the increasing of the number of the elements, the size effect will become less and less until disappeared. The value of fracture toughness decreases with the increasing of the number of the model elements. The classical continuum fracture mechanics model about material fracture under tensile stress is also established by discrete element method. The simulation results are just the same as the simulation results of single edge notched bending (SENB) and the experimental values reported in other literatures. The results provide a more reliable foundation for the application of DEM in simulating the mechanical behaviors of advance ceramics.


Sign in / Sign up

Export Citation Format

Share Document