Study on Mechanical Properties and Size Effect of Si3N4 Using Discrete Element Method

2009 ◽  
Vol 76-78 ◽  
pp. 719-724 ◽  
Author(s):  
Yuan Qiang Tan ◽  
Sheng Qiang Jiang ◽  
Cai Li ◽  
Dong Min Yang ◽  
Gao Feng Zhang ◽  
...  

The mechanical models formed by packed circular discrete elements were used to investigate the mechanical properties of Si3N4. In these models, the distribution of elements is random in the specified region, and the average radius of elements is 6m. The main mechanical properties investigated here are Young’s modulus, compressive strength, Poisson’s ratio, fracture toughness and bending strength. Some numerical simulation analysis of the size effect of the mechanical properties in these discrete element models were carried out. The simulation results suggest that there is no obvious size effect for Young’s modulus, compressive strength and Poisson’s ratio in these discrete element models. However, for bending strength, when the number of elements in model is less than about 9000, there exists obvious size effect, with the increasing of the number of the elements, the size effect will become less and less until disappeared. The value of fracture toughness decreases with the increasing of the number of the model elements. The classical continuum fracture mechanics model about material fracture under tensile stress is also established by discrete element method. The simulation results are just the same as the simulation results of single edge notched bending (SENB) and the experimental values reported in other literatures. The results provide a more reliable foundation for the application of DEM in simulating the mechanical behaviors of advance ceramics.

2013 ◽  
Vol 288 ◽  
pp. 37-40
Author(s):  
Yong Ye ◽  
Liang Kang

The mechanics models formed by packed circular discrete elements and randomly distributed in a specified region were used to investigate the mechanics properties of granite, and some different sizes of discrete element models were carried out to study the size effect of mechanics properties. The simulation results suggest that there is no obvious size effect for Poisson’s ratio, compressive strength and Young’s modulus. However, the value of bending strength decreases with the increasing of the model size.


2015 ◽  
Vol 59 (4) ◽  
pp. 575-582 ◽  
Author(s):  
Kornél Tamás ◽  
Bernát Földesi ◽  
János Péter Rádics ◽  
István J. Jóri ◽  
László Fenyvesi

2013 ◽  
Vol 353-356 ◽  
pp. 802-805
Author(s):  
Jian Qing Jiang

Red-sandstone granular soil reinforced with gabion-mesh is a new concept of composite reinforced soil. In order to reveal the mechanical properties of this composite reinforced soil, a series of laboratory triaxial compression tests on specimens reinforced with gabion-mesh were carried out, and 3D discrete element method was introduced to simulate the triaxial tests. The macro stress-strain relation of red-sandstone specimens reinforced with gabion-mesh was reproduced by the 3D discrete element model. The results show that 3D discrete element method is an ideal technique to study the meso-mechanical nature characteristics of gabion-mesh reinforced red-sandstone granular soil.


2012 ◽  
Vol 233 ◽  
pp. 224-227 ◽  
Author(s):  
Tao Yong Zhou ◽  
Bin Hu ◽  
Xue Jun Wang ◽  
Bo Yan

Railway ballast tamping operations is an important work in the line maintenance and repair operations, the selection of tamping parameter is usually dependent on field trials and practical experience, for the mechanical properties of railway ballast is difficult to measure and describe. This paper creates discrete element analysis model of railway ballast using the discrete element method, the numerical simulations are carried out to study the mechanical properties of railway ballast during tamping process. We focus on the influence of amplitude during tamping process; an optimal amplitude of the simulation analysis is obtained and compared with the recommended amplitude of Plasser & Theurer Company, it is found that the two amplitudes accord. This result verifies the correct validity of the discrete element analysis model of railway ballast during tamping process.


2021 ◽  
Vol 249 ◽  
pp. 07010
Author(s):  
Wei Pin Goh ◽  
Mojtaba Ghadiri

Milling is an important process for tailoring the particle size distribution for enhanced attributes, such as dissolution, content uniformity, tableting, etc., especially for active pharmaceutical ingredients and excipients in pharmaceutical industries. Milling performance of particulate solids depends on the equipment operating conditions (geometry, process conditions and input energy etc.) as well as material properties (particle size, shape, and mechanical properties, such as Young’s modulus, hardness and fracture toughness). In this paper the particle dynamics in a pin mill is analysed using Discrete Element Method (DEM), combined with a novel approach for assessing particle breakability by single particle impact testing. A sensitivity analysis is carried out addressing the effect of the milling conditions (rotational speed and feed particle flow rate), accounting for feed mechanical properties on the breakage behaviour of the particles. Particle collision energy spectra are calculated and shown to have a distribution with the upper tail end being close to the maximum energy associated with the collision with the rings. Breakage is primarily due to collisions with the rings, except for large particles that are comparable in size with the gap between the rings, nipping is also a contributory breakage mechanism.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Renjie Wen ◽  
Cai Tan ◽  
Yong Wu ◽  
Chen Wang

Biaxial compression tests with the same specimen size and different maximum grain sizes were simulated for coarse-grained soils using the discrete element method to study the influence of grain size on the mechanical properties and force chain. The maximum grain sizes were 40, 20, 10, and 5 mm, respectively. The grading with self-similar fractal structure in mass is designed to ensure the same pore structure for soils. The shear strength increased with the increase in maximum grain size. Evident increase in shear strength and significant size effect were observed when the ratio of the specimen diameter to maximum grain size was less than five. The shear dilation of coarse-grained soils increases with the increase in maximum grain size. The contact force distribution was uniform when maximum grain size was small but tends to be uneven with the increase in maximum grain size, thereby causing the increase in shear strength by stable strong force chains. This finding demonstrates size effect on the mechanical properties and force chain of cohesionless coarse-grained soils under the biaxial compression condition.


Sign in / Sign up

Export Citation Format

Share Document