scholarly journals Design, Antileishmanial Activity, and QSAR Studies of a Series of Piplartine Analogues

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Flávio R. Nóbrega ◽  
Larisse V. Silva ◽  
Carlos da Silva M. Bezerra Filho ◽  
Tamires C. Lima ◽  
Yunierkis P. Castillo ◽  
...  

Piplartine is an alkamide found in different Piper species and possesses several biological activities, including antiparasitic properties. Thus, the aim of the present study was to evaluate a series of 32 synthetic piplartine analogues against the Leishmania amazonensis promastigote forms and establish the structure-activity relationship and 3D-QSAR of these compounds. The antileishmanial effect of the compounds was determined using the MTT method. Most compounds were found to be active against L. amazonensis. Among 32 assayed derivatives, compound (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity (IC50 = 0.007 ± 0.008 μM, SI > 10), followed by benzyl 3,4,5-trimethoxybenzoate (IC50 = 0.025 ± 0.009 μM, SI > 3.205) and (E)-furfuryl 3-(3,4,5-trimethoxyphenyl)-acrylate (IC50 = 0.029 ± 0.007 μM, SI > 2.688). It was found that the rigid substituents contribute to increasing antiparasitic activity against L. amazonensis promastigotes. The presence of the unsaturated heterocyclic substituent in the phenylpropanoid chemical structure (furfuryl group) resulted in a bioactive derivative. Molecular simplification of benzyl 3,4,5-trimethoxybenzoate by omitting the spacer group contributed to the bioactivity of this compound. Furthermore, bornyl radical appears to be important for antileishmanial activity, since (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity. These results show that some derivatives studied would be useful as prototype molecules for the planning of new derivatives with profile of antileishmanial drugs.

2020 ◽  
Vol 16 (2) ◽  
pp. 155-166
Author(s):  
Naveen Dhingra ◽  
Anand Kar ◽  
Rajesh Sharma

Background: Microtubules are dynamic filamentous cytoskeletal structures which play several key roles in cell proliferation and trafficking. They are supposed to contribute in the development of important therapeutic targeting tumor cells. Chalcones are important group of natural compounds abundantly found in fruits & vegetables that are known to possess anticancer activity. We have used QSAR and docking studies to understand the structural requirement of chalcones for understanding the mechanism of microtubule polymerization inhibition. Methods: Three dimensional (3D) QSAR (CoMFA and CoMSIA), pharmacophore mapping and molecular docking studies were performed for the generation of structure activity relationship of combretastatin-like chalcones through statistical models and contour maps. Results: Structure activity relationship revealed that substitution of electrostatic, steric and donor groups may enhance the biological activity of compounds as inhibitors of microtubule polymerization. From the docking study, it was clear that compounds bind at the active site of tubulin protein. Conclusion: The given strategies of modelling could be an encouraging way for designing more potent compounds as well as for the elucidation of protein-ligand interaction.


Author(s):  
Ebuka Leonard Onyeyilim ◽  
Mercy Amarachi Ezeokonkwo ◽  
David Izuchukwu Ugwu ◽  
Chiamaka Peace Uzoewulu ◽  
Florence Uchenna Eze ◽  
...  

: Carbohydrazides and their Schiff bases are important class of heterocycles that are not only employed in the area of organic chemistry, but also have tremendous applications in physical and inorganic chemistry. A series of potential bioactive compounds, containing carbohydrazide functionality and their hydrazone derivatives have been synthesized and screened for antibacterial, anticancer, antifungal and anti-inflammatory etc. This brief review discloses some synthetic route to so many reported carbohydrazides, their Schiff bases, their biological activities and their structure activity relationship.


2021 ◽  
Vol 16 (10) ◽  
pp. 50-58
Author(s):  
Ali Qusay Khalid ◽  
Vasudeva Rao Avupati ◽  
Husniza Hussain ◽  
Tabarek Najeeb Zaidan

Dengue fever is a viral infection spread by the female mosquito Aedes aegypti. It is a virus spread by mosquitoes found all over the tropics with risk levels varying depending on rainfall, relative humidity, temperature and urbanization. There are no specific medications that can be used to treat the condition. The development of possible bioactive ligands to combat Dengue fever before it becomes a pandemic is a global priority. Few studies on building three-dimensional quantitative structure-activity relationship (3D QSAR) models for anti-dengue agents have been reported. Thus, we aimed at building a statistically validated atom-based 3D-QSAR model using bioactive ligands reported to possess significant anti-dengue properties. In this study, the Schrodinger PhaseTM atom-based 3D QSAR model was developed and was validated using known anti-dengue properties as ligand data. This model was also tested to see if there was a link between structural characteristics and anti-dengue activity of a series of 3-acyl-indole derivatives. The established 3D QSAR model has strong predictive capacity and is statistically significant [Model: R2 Training Set = 0.93, Q2 (R2 Test Set) = 0.72]. In addition, the pharmacophore characteristics essential for the reported anti-dengue properties were explored using combined effects contour maps (coloured contour maps: blue: positive potential and red: negative potential) of the model. In the pathway of anti-dengue drug development, the model could be included as a virtual screening method to predict novel hits.


Sign in / Sign up

Export Citation Format

Share Document