scholarly journals Modified Silica Incorporating into PDMS Polymeric Membranes for Bioethanol Selection

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Ping Peng ◽  
Yongqiang Lan ◽  
Juxiang Luo

In this work, polydimethylsiloxane (PDMS) polymeric membranes were fabricated by incorporating fumed silica nanoparticles which were functionalized with two silane coupling agents—NH2(CH2)3Si(OC2H5)3(APTS) and NH2(CH2)2NH(CH2)3Si(OC2H5)3(TSED)—for selective removal of ethanol from aqueous solutions via pervaporation. It was demonstrated that large agglomerates were not observed indicating the uniform distribution of modified silica throughout the PDMS matrices. It is noted that the ethanol diffusivity and the water contact angles were both increased remarkably, being beneficial to the preferential permeation of ethanol through the membranes. The pervaporation results showed that the addition of the two types of modified silica nanoparticles dramatically enhanced both the permeability and selectivity of hybrid membranes. Compared to APTS, silica modified by TSED at the concentration of 4 wt. % resulted in the optimum pervaporation membranes with the maximum separation factor of 12.09 and the corresponding permeation flux of approximately 234.0 g·m−2·h−1in a binary aqueous mixture at 40°C containing 10 wt. % ethanol. The observation will benefit the choice of coupling agents to improve the compatibility between hydrophilic fillers and hydrophobic polymers in preparing mixed matrix membranes.

2018 ◽  
Vol 5 (7) ◽  
pp. 180598 ◽  
Author(s):  
Xiaoming Wang ◽  
Xingeng Li ◽  
Qingquan Lei ◽  
Yaping Wu ◽  
Wenjing Li

Composite superhydrophobic coating built with film former and filler is attracting much attention for its facile and convenient fabrication, but significant limitations and disadvantages still remain. In this paper, a composite superhydrophobic coating is introduced which can be cured at room temperature and made by dispersing modified silica nanoparticles with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane in fluorosilicone resin. Silica content and dispersion time showed obvious influences on the morphology and topography of composite coating by reuniting dispersed nanoparticles to form peaks on the surface. Excessively large distances between these peaks would decrease water contact angle value. Increasing slope of peaks, appropriate distance between peaks and decreasing diameter size of peaks would diminish sliding angle value. Formation mechanism of the composite coating based on fluorosilicone resin and modified nanoparticles was explained using interpenetrating polymer model.


2003 ◽  
Vol 3 (3) ◽  
pp. 273-279 ◽  
Author(s):  
Yuxiang Chen ◽  
Zhigang Xue ◽  
Duo Zheng ◽  
Kun Xia ◽  
Yanzhong Zhao ◽  
...  

Author(s):  
Xi Wu ◽  
Muhammad Asim Farooq ◽  
Tiantian Li ◽  
Tianjiao Geng ◽  
Perpeuta Takunda Kutoka ◽  
...  

2016 ◽  
Vol 40 (10) ◽  
pp. 8444-8450 ◽  
Author(s):  
Feng Guodong ◽  
Guan Mingming ◽  
Lai Qi ◽  
Mi Hongyu ◽  
Li Guanghua ◽  
...  

The preparation of modified silica nanoparticles with guanidine was developed and used to catalyze the Henry reaction and fix quantum dots.


Sign in / Sign up

Export Citation Format

Share Document