scholarly journals Theoretical and Experimental Study on Echo Fluctuation Suppression of a Cirrus Cloud by Millimeter Wave MIMO Radar

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jinhu Wang ◽  
Junxiang Ge ◽  
Ming Wei ◽  
Hongbin Chen ◽  
Zexin Yang ◽  
...  

The scattering properties of nonspherical particles can be approximately computed by equivalent spherical theory. The scattering properties of ice particles were approximately computed by Rayleigh approximation because the sizes of the ice particles are smaller than the wavelength of millimeter wave radar. Based on the above assumption, the echo fluctuation of moving particles was analyzed by computing the total backscattering field of a cirrus cloud using the classical vector potential technique. The simulation results showed that echo fluctuation influences the accuracy of retrieving the physical parameters of a cloud. To suppress the echo fluctuation of moving ice particles, a video integrator of a millimeter wave cloud radar would be used. However, video integrators lose the rapidly changing information of ice particles and reduce radar range resolution; thus, we propose the pace-diversity technique of MIMO radar to reduce the echo fluctuation, which could be validated by theoretical computation and experimental measurements.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 997
Author(s):  
Jun Zhong ◽  
Xin Gou ◽  
Qin Shu ◽  
Xing Liu ◽  
Qi Zeng

Foreign object debris (FOD) on airport runways can cause serious accidents and huge economic losses. FOD detection systems based on millimeter-wave (MMW) radar sensors have the advantages of higher range resolution and lower power consumption. However, it is difficult for traditional FOD detection methods to detect and distinguish weak signals of targets from strong ground clutter. To solve this problem, this paper proposes a new FOD detection approach based on optimized variational mode decomposition (VMD) and support vector data description (SVDD). This approach utilizes SVDD as a classifier to distinguish FOD signals from clutter signals. More importantly, the VMD optimized by whale optimization algorithm (WOA) is used to improve the accuracy and stability of the classifier. The results from both the simulation and field case show the excellent FOD detection performance of the proposed VMD-SVDD method.


2012 ◽  
Vol 51 (3) ◽  
pp. 655-671 ◽  
Author(s):  
Robin J. Hogan ◽  
Lin Tian ◽  
Philip R. A. Brown ◽  
Christopher D. Westbrook ◽  
Andrew J. Heymsfield ◽  
...  

AbstractThe assumed relationship between ice particle mass and size is profoundly important in radar retrievals of ice clouds, but, for millimeter-wave radars, shape and preferred orientation are important as well. In this paper the authors first examine the consequences of the fact that the widely used “Brown and Francis” mass–size relationship has often been applied to maximum particle dimension observed by aircraft Dmax rather than to the mean of the particle dimensions in two orthogonal directions Dmean, which was originally used by Brown and Francis. Analysis of particle images reveals that Dmax ≃ 1.25Dmean, and therefore, for clouds for which this mass–size relationship holds, the consequences are overestimates of ice water content by around 53% and of Rayleigh-scattering radar reflectivity factor by 3.7 dB. Simultaneous radar and aircraft measurements demonstrate that much better agreement in reflectivity factor is provided by using this mass–size relationship with Dmean. The authors then examine the importance of particle shape and fall orientation for millimeter-wave radars. Simultaneous radar measurements and aircraft calculations of differential reflectivity and dual-wavelength ratio are presented to demonstrate that ice particles may usually be treated as horizontally aligned oblate spheroids with an axial ratio of 0.6, consistent with them being aggregates. An accurate formula is presented for the backscatter cross section apparent to a vertically pointing millimeter-wave radar on the basis of a modified version of Rayleigh–Gans theory. It is then shown that the consequence of treating ice particles as Mie-scattering spheres is to substantially underestimate millimeter-wave reflectivity factor when millimeter-sized particles are present, which can lead to retrieved ice water content being overestimated by a factor of 4.


2000 ◽  
Vol 54 (10) ◽  
pp. 101-111
Author(s):  
Aleksey Alekseevich Tolkachev ◽  
Vasiliy Andreevich Makota ◽  
Mariya Petrovna Pavlova ◽  
Anatoliy Moiseevich Nikolaev ◽  
Vladimir Victorovich Denisenko ◽  
...  

2006 ◽  
Vol 65 (16) ◽  
pp. 1453-1462
Author(s):  
A. N. Nechiporenko ◽  
L. D. Fesenko

2021 ◽  
Vol 5 (3) ◽  
pp. 1-4
Author(s):  
Dominik Meier ◽  
Christian Zech ◽  
Benjamin Baumann ◽  
Bersant Gashi ◽  
Matthias Malzacher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document