scholarly journals Start-Up Process Modelling of Sediment Microbial Fuel Cells Based on Data Driven

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Fengying Ma ◽  
Yankai Yin ◽  
Min Li

Sediment microbial fuel cells (SMFCs) are a typical microbial fuel cell without membranes. They are a device developed on the basis of electrochemistry and use microbes as catalysts to convert chemical energy stored in organic matter into electrical energy. This study selected a single-chamber SMFC as a research object, using online monitoring technology to accurately measure the temperature, pH, and voltage of the microbial fuel cell during the start-up process. In the process of microbial fuel cell start-up, the relationship between temperature, pH, and voltage was analysed in detail, and the correlation between them was calculated using SPSS software. The experimental results show that, at the initial stage of SMFC, the purpose of rapid growth of power production can be achieved by a large increase in temperature, but once the temperature is reduced, the power production of SMFC will soon recover to the state before the temperature change. At the beginning of SMFC, when the temperature changes drastically, pH will change the same first, and then there will be a certain degree of rebound. In the middle stage of SMFC start-up, even if the temperature will return to normal after the change, a continuous temperature drop in a short time will lead to a continuous decrease in pH value. The RBF neural network and ELM neural network were used to perform nonlinear system regression in the later stage of SMFC start-up and using the regression network to forecast part of the data. The experimental results show that the ELM neural network is more excellent in forecasting SMFC system. This article will provide important guidance for shortening start-up time and increasing power output.

2017 ◽  
Vol 10 (5) ◽  
pp. 1025-1033 ◽  
Author(s):  
Wulin Yang ◽  
Kyoung-Yeol Kim ◽  
Pascal E. Saikaly ◽  
Bruce E. Logan

A review of the literature using cube-type microbial fuel cell reveals the extent in variability of power production.


RSC Advances ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 3069-3080 ◽  
Author(s):  
Paolo Dessì ◽  
Estefania Porca ◽  
Johanna Haavisto ◽  
Aino-Maija Lakaniemi ◽  
Gavin Collins ◽  
...  

A mesophilic (37 °C) and a thermophilic (55 °C) two-chamber microbial fuel cell (MFC) were studied and compared for their power production from xylose and the anode-attached, membrane-attached and planktonic microbial communities involved.


2007 ◽  
Vol 73 (16) ◽  
pp. 5347-5353 ◽  
Author(s):  
Hanno Richter ◽  
Martin Lanthier ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1383 ◽  
Author(s):  
Liping Fan ◽  
Junyi Shi ◽  
Tian Gao

Proton exchange membrane is an important factor affecting the power generation capacity and water purification effect of microbial fuel cells. The performance of microbial fuel cells can be improved by modifying the proton exchange membrane by some suitable method. Microbial fuel cells with membranes modified by SiO2/PVDF (polyvinylidene difluoride), sulfonated PVDF and polymerized MMA (methyl methacrylate) electrolyte were tested and their power generation capacity and water purification effect were compared. The experimental results show that the three membrane modification methods can improve the power generation capacity and water purification effect of microbial fuel cells to some extent. Among them, the microbial fuel cell with the polymerized MMA modified membrane showed the best performance, in which the output voltage was 39.52 mV, and the electricity production current density was 18.82 mA/m2, which was 2224% higher than that of microbial fuel cell with the conventional Nafion membrane; and the COD (chemical oxygen demand) removal rate was 54.8%, which was 72.9% higher than that of microbial fuel cell with the conventional Nafion membrane. Modifying the membrane with the polymerized MMA is a very effective way to improve the performance of microbial fuel cells.


2018 ◽  
Vol 8 (12) ◽  
pp. 2384 ◽  
Author(s):  
Gene Drendel ◽  
Elizabeth R. Mathews ◽  
Lucie Semenec ◽  
Ashley E. Franks

Microbial fuel cells present an emerging technology for utilizing the metabolism of microbes to fuel processes including biofuel, energy production, and the bioremediation of environments. The application and design of microbial fuel cells are of interest to a range of disciplines including engineering, material sciences, and microbiology. In addition, these devices present numerous opportunities to improve sustainable practices in different settings, ranging from industrial to domestic. Current research is continuing to further our understanding of how the engineering, design, and microbial aspects of microbial fuel cell systems impact upon their function. As a result, researchers are continuing to expand the range of processes microbial fuel cells can be used for, as well as the efficiency of those applications.


2008 ◽  
Vol 8 (8) ◽  
pp. 4132-4134 ◽  
Author(s):  
Tushar Sharma ◽  
A. Leela Mohana Reddy ◽  
T. S. Chandra ◽  
S. Ramaprabhu

Microbial Fuel Cells (MFC) are robust devices capable of taping biological energy, converting sugars into potential sources of energy. Persistent efforts are directed towards increasing power output. However, they have not been researched to the extent of making them competitive with chemical fuel cells. The power generated in a dual-chamber MFC using neutral red (NR) as the electron mediator has been previously shown to be 152.4 mW/m2 at 412.5 mA/m2 of current density. In the present work we show that Pt thin film coated carbon paper as electrodes increase the performance of a microbial fuel cell compared to conventionally employed electrodes. The results obtained using E. coli based microbial fuel cell with methylene blue and neutral red as the electron mediator, potassium ferricyanide in the cathode compartment were systematically studied and the results obtained with Pt thin film coated over carbon paper as electrodes were compared with that of graphite electrodes. Platinum coated carbon electrodes were found to be better over the previously used for microbial fuel cells and at the same time are cheaper than the preferred pure platinum electrodes.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
T. Chailloux ◽  
A. Capitaine ◽  
B. Erable ◽  
G. Pillonnet

AbstractMicrobial fuel cells (MFC’s) are promising energy harvesters to constantly supply energy to sensors deployed in aquatic environments where solar, thermal and vibration sources are inadequate. In order to show the ready-to-use MFC potential as energy scavengers, this paper presents the association of a durable benthic MFC with a few dollars of commercially-available power management units (PMU’s) dedicated to other kinds of harvesters. With 20 cm


2016 ◽  
Vol 2 (5) ◽  
pp. 858-863 ◽  
Author(s):  
Wulin Yang ◽  
Bruce E. Logan

Microbial fuel cell (MFC) cathodes must have high performance and be resistant to water leakage.


Author(s):  
Jie Yang ◽  
Sasan Ghobadian ◽  
Reza Montazami ◽  
Nastaran Hashemi

Microbial fuel cell (MFC) technology is a promising area in the field of renewable energy because of their capability to use the energy contained in wastewater, which has been previously an untapped source of power. Microscale MFCs are desirable for their small footprints, relatively high power density, fast start-up, and environmentally-friendly process. Microbial fuel cells employ microorganisms as the biocatalysts instead of metal catalysts, which are widely applied in conventional fuel cells. MFCs are capable of generating electricity as long as nutrition is provided. Miniature MFCs have faster power generation recovery than macroscale MFCs. Additionally, since power generation density is affected by the surface-to-volume ratio, miniature MFCs can facilitate higher power density. We have designed and fabricated a microscale microbial fuel cell with a volume of 4 μL in a polydimethylsiloxane (PDMS) chamber. The anode and cathode chambers were separated by a proton exchange membrane. Carbon cloth was used for both the anode and the cathode. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacteria and was inoculated into the anode chamber. We employed Ferricyanide as the catholyte and introduced it into the cathode chamber with a constant flow rate of approximately 50 μL/hr. We used trypticase soy broth as the bacterial nutrition and added it into the anode chamber approximately every 15 hours once current dropped to base current. Using our miniature MFC, we were able to generate a maximum current of 4.62 μA.


2012 ◽  
Vol 512-515 ◽  
pp. 1525-1528 ◽  
Author(s):  
Liang Liu ◽  
Yan Yang ◽  
Ding Long Li

Cr(VI) was reduced at a carbon felt cathode in an air-cathode dual-chamber microbial fuel cell (MFC). The reduction of Cr(VI) was proven to be strongly associated with the electrogenerated H2O2 at the cathode. At pH 3.0, only 27.3% of Cr(VI) was reduced after 12h in the nitrogen-bubbling-cathode MFC, while complete reduction of Cr(VI) was achieved after 6h in the air-bubbling-cathode MFC in which the reduction of oxygen to H2O2was confirmed. The results showed that the efficient reduction of Cr(VI) could be achieved with an air-bubbling-cathode MFC.


Sign in / Sign up

Export Citation Format

Share Document