scholarly journals Diffusion and Friction Dynamics of Probe Molecules in Liquid n-Alkane Systems: A Molecular Dynamics Simulation Study

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Song Hi Lee

We present a molecular dynamics simulation study of the probe diffusion and friction dynamics of Lennard-Jones particles in a series of liquid n-alkane systems from C12 up to C400 at 318 K, 418 K, 518 K, and 618 K, to investigate the power law dependence of self-diffusion of polymer liquids on their molecular weights. Two LJ particles MY1 with a mass of 114 g/mol and MY2 with a mass of 225 g/mol are used as probes to model methyl yellow. We observed that a clear transition in the power law dependence of n-alkane self-diffusion on the molecular weight (M) of n-alkane, Dself∼M−γ, occurs in the range C120∼C160 at temperatures of 318 K, 418 K, and 518 K, corresponding to a crossover from the “oligomer” to the “Rouse” regime. We also observed that a clear transition in the power law dependence of the diffusion coefficient DMY2 on the molecular weight (M) of n-alkane, DMY2∼M−γ, occurs at low temperatures. The exponent γ for DMY2 shows a sharp transition from 1.21 to 0.52 near C36 at 418 K and from 1.54 to 0.60 near C36 at 318 K. However, no such transition is found for the probe molecule MY2 at temperatures of 518 K and 618 K and for MY1 probe at temperatures of 418 K, 518 K, and 618 K, but the power law exponent γ for MY1 at 318 K shows instead a linear or a rather slow transition. The dependence of the probe diffusion (DMY2) on the matrix molecular weight (M) reflects a significant change of the matrix dynamics associated with the probe diffusion: a crossover from the “solvent-like” to the “oligomer” regime. As the molecular weight of n-alkane increases, the ratio of Dself/DMY2 becomes less than 1 and the probe molecules encounter, in turn, two different microscopic frictions depending on MMY/Mmatrix and the temperature. It is believed that a reduction in the microscopic friction on the probe molecules that diffuse at a rate faster than the solvent fluctuations leads to large deviations of slope from the linear dependence of the friction of MY2 on the chain length of the n-alkane at 318 K and 418 K.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 129 ◽  
Author(s):  
Boris Okrugin ◽  
Maxim Ilyash ◽  
Denis Markelov ◽  
Igor Neelov

Poly-l-ysine dendrigrafts are promising systems for biomedical applications due to their biodegradability, biocompatibility, and similarity to dendrimers. There are many papers about the use of dendrigrafts as nanocontainers for drug delivery. At the same time, the number of studies about their physical properties is limited, and computer simulations of dendrigrafts are almost absent. This paper presents the results of a systematic molecular dynamics simulation study of third-generation lysine dendrigrafts with different topologies. The size and internal structures of the dendrigrafts were calculated. We discovered that the size of dendrigrafts of the same molecular weight depends on their topology. The shape of all studied dendrigrafts is close to spherical. Density profile of dendrigrafts depends on their topology.


Sign in / Sign up

Export Citation Format

Share Document