scholarly journals Perturbation Bound for the Drazin Inverse of the Matrix-Value Function

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yonghui Qin ◽  
Zhenshu Xie ◽  
Xiaoji Liu

The perturbation analysis of the differential for the Drazin inverse of the matrix-value function A(t)∈Cn×n is investigated. An upper bound of the Drazin inverse and its differential is also considered. Applications to the perturbation bound for the solution of the matrix-value function coefficients some matrix equations are given.

Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5177-5191 ◽  
Author(s):  
Xiaoji Liu ◽  
Yonghui Qin

In this paper, we consider perturbation analysis for the generalized Drazin inverse of an operator in Banach space. An necessary and sufficient condition for the generalized Drazin invertible is given. The upper bound is given under some certain conditions, and a relative perturbation bound is also considered.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Xue-Feng Duan ◽  
Qing-Wen Wang

We consider the perturbation analysis of the matrix equationX−∑i=1mAi∗XAi+∑j=1nBj∗XBj=I. Based on the matrix differentiation, we first give a precise perturbation bound for the positive definite solution. A numerical example is presented to illustrate the sharpness of the perturbation bound.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Xuefeng Duan ◽  
Chunmei Li

Based on the alternating projection algorithm, which was proposed by Von Neumann to treat the problem of finding the projection of a given point onto the intersection of two closed subspaces, we propose a new iterative algorithm to solve the matrix nearness problem associated with the matrix equations AXB=E, CXD=F, which arises frequently in experimental design. If we choose the initial iterative matrix X0=0, the least Frobenius norm solution of these matrix equations is obtained. Numerical examples show that the new algorithm is feasible and effective.


1991 ◽  
Vol 113 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Hisatsune ◽  
T. Tabata ◽  
S. Masaki

Axisymmetric deformation of anisotropic porous materials caused by geometry of pores or by distribution of pores is analyzed. Two models of the materials are proposed: one consists of spherical cells each of which has a concentric ellipsoidal pore; and the other consists of ellipsoidal cells each of which has a concentric spherical pore. The velocity field in the matrix is assumed and the upper bound approach is attempted. Yield criteria are expressed as ellipses on the σm σ3 plane which are longer in longitudinal direction with increasing anisotropy and smaller with increasing volume fraction of the pore. Furthermore, the axes rotate about the origin at an angle α from the σm-axis, while the axis for isotropic porous materials is on the σm-axis.


2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Feng Yin ◽  
Guang-Xin Huang

An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations(AXB-CYD,EXF-GYH)=(M,N), which includes Sylvester and Lyapunov matrix equations as special cases, over generalized reflexive matricesXandY. When the matrix equations are consistent, for any initial generalized reflexive matrix pair[X1,Y1], the generalized reflexive solutions can be obtained by the iterative algorithm within finite iterative steps in the absence of round-off errors, and the least Frobenius norm generalized reflexive solutions can be obtained by choosing a special kind of initial matrix pair. The unique optimal approximation generalized reflexive solution pair[X̂,Ŷ]to a given matrix pair[X0,Y0]in Frobenius norm can be derived by finding the least-norm generalized reflexive solution pair[X̃*,Ỹ*]of a new corresponding generalized coupled Sylvester matrix equation pair(AX̃B-CỸD,EX̃F-GỸH)=(M̃,Ñ), whereM̃=M-AX0B+CY0D,Ñ=N-EX0F+GY0H. Several numerical examples are given to show the effectiveness of the presented iterative algorithm.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Santiago Artidiello ◽  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1668
Author(s):  
Eber Lenes ◽  
Exequiel Mallea-Zepeda ◽  
Jonnathan Rodríguez

Let G be a graph, for any real 0≤α≤1, Nikiforov defines the matrix Aα(G) as Aα(G)=αD(G)+(1−α)A(G), where A(G) and D(G) are the adjacency matrix and diagonal matrix of degrees of the vertices of G. This paper presents some extremal results about the spectral radius ρα(G) of the matrix Aα(G). In particular, we give a lower bound on the spectral radius ρα(G) in terms of order and independence number. In addition, we obtain an upper bound for the spectral radius ρα(G) in terms of order and minimal degree. Furthermore, for n>l>0 and 1≤p≤⌊n−l2⌋, let Gp≅Kl∨(Kp∪Kn−p−l) be the graph obtained from the graphs Kl and Kp∪Kn−p−l and edges connecting each vertex of Kl with every vertex of Kp∪Kn−p−l. We prove that ρα(Gp+1)<ρα(Gp) for 1≤p≤⌊n−l2⌋−1.


Sign in / Sign up

Export Citation Format

Share Document