scholarly journals Effect of Shot Peening on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants Produced by 3D Printing Technology

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Remigiusz Żebrowski ◽  
Mariusz Walczak ◽  
Agnieszka Korga ◽  
Magdalena Iwan ◽  
Mirosław Szala

Structural discontinuities characterize the implants produced directly from metal powders in 3D printing technology. Mainly, the surface defects should be subjected to procedures associated with surface layer modification (likewise shot peening) resulting in the increase of the implant service life maintaining optimal biocompatibility. Therefore, the purpose of the present study was to investigate the effect of type of shot used for the peening process on the Ti-6Al-4V implants functional properties as well as the biological properties. The components were produced by DMLS (direct metal laser sintering) additive technology. The surfaces of titanium specimens have been subjected to the shot peening process by means of three different shots, i.e., CrNi steel shot, crushed nut shells, and ceramic balls shot. Then, the specimens have been subjected to profilometric analysis, microhardness tests, and static strength testing as well as to the assessment of biocompatibility in respect of cytotoxicity using human BJ fibroblasts. The shot peening process causes the strengthening of surface layer and the increase of strength parameters. Furthermore, the test results indicate good biocompatibility of surfaces being tested, and the effect of shot peening process on the titanium alloy cytotoxicity is acceptable. At the same time, most favourable behaviour in respect of cytotoxicity has been found in the case of surfaces modified by means of ceramic balls > nut shells > CrNi steel shot correspondingly.

2018 ◽  
Vol 6 (19) ◽  
pp. 3136-3144 ◽  
Author(s):  
Jie Qin ◽  
Dongqing Yang ◽  
Shaheer Maher ◽  
Luis Lima-Marques ◽  
Yanmin Zhou ◽  
...  

3D printing technology combined with electrochemical nano-structuring and HA modification is a promising approach for the fabrication of Ti implants with improved osseointegration.


Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib

2020 ◽  
Vol 14 (7) ◽  
pp. 470
Author(s):  
Jarosław Kotliński ◽  
Karol Osowski ◽  
Zbigniew Kęsy ◽  
Andrzej Kęsy

2021 ◽  
pp. 2102649
Author(s):  
Sourav Chaule ◽  
Jongha Hwang ◽  
Seong‐Ji Ha ◽  
Jihun Kang ◽  
Jong‐Chul Yoon ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1106
Author(s):  
Alejandro Cortés ◽  
Xoan F. Sánchez-Romate ◽  
Alberto Jiménez-Suárez ◽  
Mónica Campo ◽  
Ali Esmaeili ◽  
...  

Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions.


Sign in / Sign up

Export Citation Format

Share Document