scholarly journals Curcumin Inhibits Proliferation of Epstein–Barr Virus-Associated Human Nasopharyngeal Carcinoma Cells by Inhibiting EBV Nuclear Antigen 1 Expression

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Limei Liu ◽  
Jiaomin Yang ◽  
Wuguang Ji ◽  
Chao Wang

This investigation aims to study the effect of curcumin on the proliferation, cycle arrest, and apoptosis of Epstein–Barr virus- (EBV-) positive nasopharyngeal carcinoma (NPC) cells. EBV+ NPC cells were subjected to curcumin treatment. The cell viability was evaluated with the CCK-8. Cell cycle and apoptosis were analyzed by flow cytometry analysis. Expression (protein and mRNA) levels were detected with western blotting and quantitative real-time PCR, respectively. Curcumin efficiently reduced the viability of EBV+ NPC cells. Curcumin induced the cycle arrest of the HONE1 and HK1-EBV cells positive for EBV. Moreover, curcumin treatment promoted the NPC cell apoptosis, via the mitochondria- and death receptor-mediated pathways. Furthermore, curcumin decreased the expression of EBNA1 in the HONE1 and HK1-EBV cells and inhibited the transcriptional level of EBNA1 in the HeLa cells. Curcumin induced EBNA1 degradation via the proteasome-ubiquitin pathway. In addition, curcumin inhibited the proliferation of HONE1 and HK1-EBV cells positive for EBV, probably by decreasing the expression level of EBNA1. In both the HONE1 and HK1-EBV cells, curcumin inhibited the EBV latent and lytic replication. Curcumin could reduce the EBNA1 expression and exert antitumor effects against NPC in vitro.

2020 ◽  
Vol 9 (15) ◽  
pp. 5598-5608
Author(s):  
Jie Wang ◽  
Yunfan Luo ◽  
Pei Bi ◽  
Juan Lu ◽  
Fan Wang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Li Yin ◽  
Jing Wu ◽  
Jianfeng Wu ◽  
Jinjun Ye ◽  
Xuesong Jiang ◽  
...  

This study aims to evaluate the radiosensitization effect of nedaplatin on nasopharyngeal carcinoma (NPC) cell lines with different Epstein-Barr virus (EBV) status. Human NPC cell lines CNE-2 (EBV-negative) and C666 (EBV-positive) were treated with 0–100 μg/mL nedaplatin, and inhibitory effects on cell viability and IC50were calculated by MTS assay. We assessed changes in radiosensitivity of cells by MTS and colony formation assays, and detected the apoptosis index and changes in cell cycle by flow cytometry. MTS assay showed that nedaplatin caused significant cytotoxicity in CNE-2 and C666 cells in a time- and dose-dependent manner. After 24 h, nedaplatin inhibited growth of CNE-2 and C666 cells with IC50values of 34.32 and 63.69 μg/mL, respectively. Compared with radiation alone, nedaplatin enhanced the radiation effect on both cell lines. Nedaplatin markedly increased apoptosis and cell cycle arrest in G2/M phase. Nedaplatin radiosensitized human NPC cells CNE-2 and C666, with a significantly greater effect on the former. The mechanisms of radiosensitization include induction of apoptosis and enhancement of cell cycle arrest in G2/M phase.


2017 ◽  
Vol 14 (2) ◽  
pp. 2458-2462 ◽  
Author(s):  
Ping Ai ◽  
Zhiping Li ◽  
Yong Jiang ◽  
Changping Song ◽  
Lin Zhang ◽  
...  

2004 ◽  
Vol 78 (7) ◽  
pp. 3542-3552 ◽  
Author(s):  
Wei Yue ◽  
Matthew G. Davenport ◽  
Julia Shackelford ◽  
Joseph S. Pagano

ABSTRACT The Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) is a key gene expressed in EBV type III latent infection that can transactivate numerous promoters, including those for all the other type III viral latency genes as well as cellular genes responsible for cell proliferation. EBNA-2 is essential for EBV-mediated immortalization of primary B lymphocytes. We now report that EBNA-2, a phosphoprotein, is hyperphosphorylated specifically in mitosis. Evidence that the cyclin-dependent kinase p34cdc2 may be involved in this hyperphosphorylation includes (i) coimmunoprecipitation of EBNA-2 and p34cdc2, suggesting physical association; (ii) temporal correlation between hyperphosphorylation of EBNA-2 and an increase in p34cdc2 kinase activity; and (iii) ability of purified p34cdc2/cyclin B1 kinase to phosphorylate EBNA-2 in vitro. Hyperphosphorylation of EBNA-2 appears to suppress its ability to transactivate the latent membrane protein 1 (LMP-1) promoter by about 50%. The association between EBNA-2 and PU.1 is also decreased by about 50% in M-phase-arrested cells, as shown by coimmunoprecipitation from cell lysates, suggesting that hyperphosphorylation of EBNA-2 impairs its affinity for PU.1. Finally, endogenous LMP-1 mRNA levels in M phase are around 55% of those in asynchronously growing cells. These results suggest that regulation of gene expression during type III latency may be regulated in a cell-cycle-related manner.


2012 ◽  
Vol 93 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Sheng-Yen Huang ◽  
Min-Jie Hsieh ◽  
Chu-Ying Chen ◽  
Yen-Ju Chen ◽  
Jen-Yang Chen ◽  
...  

Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein–Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2′-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation.


2006 ◽  
Vol 80 (16) ◽  
pp. 8133-8144 ◽  
Author(s):  
Pamela M. Pegman ◽  
Sinéad M. Smith ◽  
Brendan N. D'Souza ◽  
Sinéad T. Loughran ◽  
Sabine Maier ◽  
...  

ABSTRACT The human herpesvirus Epstein-Barr virus (EBV) establishes latency and promotes the long-term survival of its host B cell by targeting the molecular machinery controlling cell fate decisions. The cellular antiapoptotic bfl-1 gene confers protection from apoptosis under conditions of growth factor deprivation when expressed ectopically in an EBV-negative Burkitt's lymphoma-derived cell line (B. D'Souza, M. Rowe, and D. Walls, J. Virol. 74:6652-6658, 2000), and the EBV latent membrane protein 1 (LMP1) and its cellular functional homologue CD40 can both drive bfl-1 via an NF-κB-dependent enhancer element in the bfl-1 promoter (B. N. D'Souza, L. C. Edelstein, P. M. Pegman, S. M. Smith, S. T. Loughran, A. Clarke, A. Mehl, M. Rowe, C. Gélinas, and D. Walls, J. Virol. 78:1800-1816, 2004). Here we show that the EBV nuclear antigen 2 (EBNA2) also upregulates bfl-1. EBNA2 trans-activation of bfl-1 requires CBF1 (or RBP-Jκ), a nuclear component of the Notch signaling pathway, and there is an essential role for a core consensus CBF1-binding site on the bfl-1 promoter. trans-activation is dependent on the EBNA2-CBF1 interaction, is modulated by other EBV gene products known to interact with the CBF1 corepressor complex, and does not involve activation of NF-κB. bfl-1 expression is induced and maintained at high levels by the EBV growth program in a lymphoblastoid cell line, and withdrawal of either EBNA2 or LMP1 does not lead to a reduction in bfl-1 mRNA levels in this context, whereas the simultaneous loss of both EBV proteins results in a major decrease in bfl-1 expression. These findings are relevant to our understanding of EBV persistence, its role in malignant disease, and the B-cell developmental process.


Sign in / Sign up

Export Citation Format

Share Document