scholarly journals Rate of Drug Coating Dissolution Determines In-Tissue Drug Retention and Durability of Biological Efficacy

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Juan F. Granada ◽  
Renu Virmani ◽  
Daniel Schulz-Jander ◽  
Stefan Tunev ◽  
Robert J. Melder

Two different drug-coated balloons (DCBs) possessing different coating formulations were compared for rate of coating dissolution in vitro, in addition to tissue drug concentration and histological responses of treated vascular tissue in vivo, to determine if the rate of drug bioavailability to vascular tissue can impact the degree and duration of the observed pharmacological response to locally delivered drug. In vitro dissolution comparison demonstrated that a urea/paclitaxel-based coating formulation (IN.PACT™ Admiral™) released drug from solid to soluble phase at a slower and constant rate, yielding approximately 7% solubilized drug in 24 h. In contrast, a coating formulated from polysorbate/sorbitol/paclitaxel (Lutonix™) released 51% of solid phase drug to soluble phase in 1 h of dissolution with the remainder solubilizing in 24 h. In vivo evaluation of tissue drug concentration of both products showed significantly different tissue pharmacokinetic profile, with a higher concentration of paclitaxel in tissue at 90 days with a urea-based formulation excipient. Histological comparison of smooth muscle cell loss in response to drug exposure revealed contrasting trends of smooth muscle cell loss from 28 to 90 days with significantly higher response to drug observed at 90 days with the urea-based formulation. Rapid dissolution of drug from the polysorbate/sorbitol coating formulation was associated with an early increase in local cellular response to drug which diminished over 90 days with clearance of local drug from tissue. Sustained long-term drug-in-tissue concentration associated with the urea-based formulation demonstrated sustained pharmacological activity at 90 days, suggesting that slow coating dissolution provides a sustainable long-term tissue response.

2019 ◽  
Vol 68 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Annele Sainio ◽  
Piia Takabe ◽  
Sanna Oikari ◽  
Henriikka Salomäki-Myftari ◽  
Markku Koulu ◽  
...  

Metformin is the first-line drug in the treatment of type 2 diabetes worldwide based on its effectiveness and cardiovascular safety. Currently metformin is increasingly used during pregnancy in women with gestational diabetes mellitus, even if the long-term effects of metformin on offspring are not exactly known. We have previously shown that high glucose concentration increases hyaluronan (HA) production of cultured human vascular smooth muscle cells (VSMC) via stimulating the expression of hyaluronan synthase 2 (HAS2). This offers a potential mechanism whereby hyperglycemia leads to vascular macroangiopathy. In this study, we examined whether gestational metformin use affects HA content in the aortic wall of mouse offspring in vivo. We also examined the effect of metformin on HA synthesis by cultured human VSMCs in vitro. We found that gestational metformin use significantly decreased HA content in the intima-media of mouse offspring aortas. In accordance with this, the synthesis of HA by VSMCs was also significantly decreased in response to treatment with metformin. This decrease in HA synthesis was shown to be due to the reduction of both the expression of HAS2 and the amount of HAS substrates, particularly UDP-N-acetylglucosamine. As shown here, gestational metformin use is capable to program reduced HA content in the vascular wall of the offspring strongly supporting the idea, that metformin possesses long-term vasculoprotective effects.


2003 ◽  
Vol 95 (1) ◽  
pp. 448-453 ◽  
Author(s):  
Jahanbakhsh Naghshin ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

It has been shown that airway smooth muscle in vitro is able to maintain active force over a large length range by adaptation in the absence of periodic stimulations at 4°C (Wang L, Paré PD, and Seow CY. J Appl Physiol 90: 734–740, 2001). In this study, we show that such adaptation also takes place at body temperature and that long-term adaptation results in irreversible functional change in the muscle that could lead to airway hyperresponsiveness. Rabbit tracheal muscle explants were passively maintained at shortened and in situ length for 3 and 7–8 days in culture media; the length-tension relationship was then examined. The length associated with maximal force generation decreased by 10.5 ± 3.8% (SE) after 3 days and 37.7 ± 8.5% after 7 or 8 days of passive shortening. At day 3, the left shift in the length-tension curve due to adaptation at short lengths was reversible by readapting the muscle at a longer length. The shift was, however, not completely reversible after 7 days. The results suggest that long-term adaptation of airway smooth muscle could lead to increased muscle stiffness and force-generating ability at short lengths. Under in vivo condition, this could translate into resistance to stretch-induced relaxation and excessive airway narrowing.


1979 ◽  
Author(s):  
R.L. Kinlough-Rathbone ◽  
H.M. Groves ◽  
S. Maric ◽  
M.A. Packham ◽  
J.F. Mustard

Following a single balloon catheter injury to a rabbit aorta (INJ 1) a monolayer of platelets covers the subendothelium within 10 min, the surface becomes relatively non-reactive to further platelet accumulation and platelet survival is not altered. We have now studied whether a second similar injury (INJ 2) of the non-reactive, smooth muscle cell-rich neointima 7 days after INJ 1 makes the surface of the neointima reactive to platelets or alters platelet survival. 51Cr-platelet adherence to the neointima of aortae subjected to INJ 2 in vitro 7 days after an initial in vivo injury was not significantly different from the adherence following a single in vitro injury (16,600 ± 3100 platelets/mm2 and 27,600 ± 4000 respectively, ρ > 0.2). In vivo adherence of 51Cr-platelets to the surface of rabbit aortae was similar following INJ 1 (0.084 ± 0.009% of the circulate, platelets) and INJ 2 (0.130 ± 0.03%, p > 0.2). Platelet survival after injury to the neointima was not significantly different in animals with an undamaged aortic endothelium (74.6 ± 5.9 hr and 80.2 ± 4.3 hr respectively, ρ > 0.5). Thus, a second injury involving the smooth’ muscle cell-rich neointima that forms after removal of the endothelium with a balloon catheter does not cause more platelets to accumulate than the initial injury, nor shorten platelet survival.


2001 ◽  
Vol 88 (3) ◽  
pp. 319-324 ◽  
Author(s):  
Ciro Indolfi ◽  
Eugenio Stabile ◽  
Carmela Coppola ◽  
Adriana Gallo ◽  
Cinzia Perrino ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 166-172 ◽  
Author(s):  
Anna R. Dover ◽  
Patrick W. F. Hadoke ◽  
Linsay J. Macdonald ◽  
Eileen Miller ◽  
David E. Newby ◽  
...  

11β-Hydroxysteroid dehydrogenases (11βHSDs) catalyze interconversion of 11-hydroxy-glucocorticoids with inactive 11-keto metabolites. In blood vessel walls, loss of 11βHSD1 is thought to reduce local glucocorticoid concentrations, reducing the progression of atheroma and enhancing angiogenesis. Conversely, on the basis that 11βHSD1 is up-regulated approximately 5-fold by inflammatory cytokines in cultured human vascular smooth muscle cells, it has been proposed that increased 11βHSD1 during vascular inflammation provides negative feedback suppression of inflammation. We aimed to determine whether inflammation and injury selectively up-regulate 11βHSD1 reductase activity in vitro and in vivo in intact vascular tissue in mice. In isolated mouse aortae and femoral arteries, reductase activity (converting 11-dehydrocorticosterone to corticosterone) was approximately 10-fold higher than dehydrogenase activity and was entirely accounted for by 11βHSD1 because it was abolished in vessels from 11βHSD1−/− mice. Although 11βHSD1 activity was up-regulated by proinflammatory cytokines in cultured murine aortic smooth muscle cells, no such effect was evident in intact aortic rings in vitro. Moreover, after systemic inflammation induced by ip lipopolysaccharide injection, there was only a modest (18%) increase in 11β-reductase activity in the aorta and no increase in the perfused hindlimb. Furthermore, in femoral arteries in which neointimal proliferation was induced by intraluminal injury, there was no change in basal 11βHSD1 activity or the sensitivity of 11βHSD1 to cytokine up-regulation. We conclude that increased generation of glucocorticoids by 11βHSD1 in the murine vessel wall is unlikely to contribute to feedback regulation of inflammation.


Sign in / Sign up

Export Citation Format

Share Document