scholarly journals Development of a Stand-Alone Independent Graphical User Interface for Neurological Disease Prediction with Automated Extraction and Segmentation of Gray and White Matter in Brain MRI Images

2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Ayush Goyal ◽  
Sunayana Tirumalasetty ◽  
Gahangir Hossain ◽  
Rajab Challoo ◽  
Manish Arya ◽  
...  

This research presents an independent stand-alone graphical computational tool which functions as a neurological disease prediction framework for diagnosis of neurological disorders to assist neurologists or researchers in the field to perform automatic segmentation of gray and white matter regions in brain MRI images. The tool was built in collaboration with neurologists and neurosurgeons and many of the features are based on their feedback. This tool provides the user automatized functionality to perform automatic segmentation and extract the gray and white matter regions of patient brain image data using an algorithm called adapted fuzzy c-means (FCM) membership-based clustering with preprocessing using the elliptical Hough transform and postprocessing using connected region analysis. Dice coefficients for several patient brain MRI images were calculated to measure the similarity between the manual tracings by experts and automatic segmentations obtained in this research. The average Dice coefficients are 0.86 for gray matter, 0.88 for white matter, and 0.87 for total cortical matter. Dice coefficients of the proposed algorithm were also the highest when compared with previously published standard state-of-the-art brain MRI segmentation algorithms in terms of accuracy in segmenting the gray matter, white matter, and total cortical matter.

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
G. Sandhya ◽  
Giri Babu Kande ◽  
T. Satya Savithri

This work explains an advanced and accurate brain MRI segmentation method. MR brain image segmentation is to know the anatomical structure, to identify the abnormalities, and to detect various tissues which help in treatment planning prior to radiation therapy. This proposed technique is a Multilevel Thresholding (MT) method based on the phenomenon of Electromagnetism and it segments the image into three tissues such as White Matter (WM), Gray Matter (GM), and CSF. The approach incorporates skull stripping and filtering using anisotropic diffusion filter in the preprocessing stage. This thresholding method uses the force of attraction-repulsion between the charged particles to increase the population. It is the combination of Electromagnetism-Like optimization algorithm with the Otsu and Kapur objective functions. The results obtained by using the proposed method are compared with the ground-truth images and have given best values for the measures sensitivity, specificity, and segmentation accuracy. The results using 10 MR brain images proved that the proposed method has accurately segmented the three brain tissues compared to the existing segmentation methods such as K-means, fuzzy C-means, OTSU MT, Particle Swarm Optimization (PSO), Bacterial Foraging Algorithm (BFA), Genetic Algorithm (GA), and Fuzzy Local Gaussian Mixture Model (FLGMM).


Neurology ◽  
2017 ◽  
Vol 88 (13) ◽  
pp. 1256-1264 ◽  
Author(s):  
Timo Siepmann ◽  
Henry Boardman ◽  
Amy Bilderbeck ◽  
Ludovica Griffanti ◽  
Yvonne Kenworthy ◽  
...  

Objective:To determine whether changes in cerebral structure are present after preeclampsia that may explain increased cerebrovascular risk in these women.Methods:We conducted a case control study in women between 5 and 15 years after either a preeclamptic or normotensive pregnancy. Brain MRI was performed. Analysis of white matter structure was undertaken using voxel-based segmentation of fluid-attenuation inversion recovery sequences to assess white matter lesion volume and diffusion tensor imaging to measure microstructural integrity. Voxel-based analysis of gray matter volumes was performed with adjustment for skull size.Results:Thirty-four previously preeclamptic women (aged 42.8 ± 5.1 years) and 49 controls were included. Previously preeclamptic women had reduced cortical gray matter volume (523.2 ± 30.1 vs 544.4 ± 44.7 mL, p < 0.05) and, although both groups displayed white matter lesions, changes were more extensive in previously preeclamptic women. They displayed increased temporal lobe white matter disease (lesion volume: 23.2 ± 24.9 vs 10.9 ± 15.0 μL, p < 0.05) and altered microstructural integrity (radial diffusivity: 538 ± 19 vs 526 ± 18 × 10−6 mm2/s, p < 0.01), which also extended to occipital and parietal lobes. The degree of temporal lobe white matter change in previously preeclamptic women was independent of their current cardiovascular risk profile (p < 0.05) and increased with time from index pregnancy (p < 0.05).Conclusion:A history of preeclampsia is associated with temporal lobe white matter changes and reduced cortical volume in young women, which is out of proportion to their classic cardiovascular risk profile. The severity of changes is proportional to time since pregnancy, which would be consistent with continued accumulation of damage after pregnancy.


2019 ◽  
Vol 9 (3) ◽  
pp. 569 ◽  
Author(s):  
Hyunho Hwang ◽  
Hafiz Zia Ur Rehman ◽  
Sungon Lee

Skull stripping in brain magnetic resonance imaging (MRI) is an essential step to analyze images of the brain. Although manual segmentation has the highest accuracy, it is a time-consuming task. Therefore, various automatic segmentation algorithms of the brain in MRI have been devised and proposed previously. However, there is still no method that solves the entire brain extraction problem satisfactorily for diverse datasets in a generic and robust way. To address these shortcomings of existing methods, we propose the use of a 3D-UNet for skull stripping in brain MRI. The 3D-UNet was recently proposed and has been widely used for volumetric segmentation in medical images due to its outstanding performance. It is an extended version of the previously proposed 2D-UNet, which is based on a deep learning network, specifically, the convolutional neural network. We evaluated 3D-UNet skull-stripping using a publicly available brain MRI dataset and compared the results with three existing methods (BSE, ROBEX, and Kleesiek’s method; BSE and ROBEX are two conventional methods, and Kleesiek’s method is based on deep learning). The 3D-UNet outperforms two typical methods and shows comparable results with the specific deep learning-based algorithm, exhibiting a mean Dice coefficient of 0.9903, a sensitivity of 0.9853, and a specificity of 0.9953.


2017 ◽  
Vol 28 (2) ◽  
pp. 162-172 ◽  
Author(s):  
Clemente Velasco-Annis ◽  
Alireza Akhondi-Asl ◽  
Aymeric Stamm ◽  
Simon K. Warfield

Sign in / Sign up

Export Citation Format

Share Document