scholarly journals Cancer Stem Cells: Powerful Targets to Improve Current Anticancer Therapeutics

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Rayana L. Bighetti-Trevisan ◽  
Lucas O. Sousa ◽  
Rogerio M. Castilho ◽  
Luciana O. Almeida

A frequent observation in several malignancies is the development of resistance to therapy that results in frequent tumor relapse and metastasis. Much of the tumor resistance phenotype comes from its heterogeneity that halts the ability of therapeutic agents to eliminate all cancer cells effectively. Tumor heterogeneity is, in part, controlled by cancer stem cells (CSC). CSC may be considered the reservoir of cancer cells as they exhibit properties of self-renewal and plasticity and the capability of reestablishing a heterogeneous tumor cell population. The endowed resistance mechanisms of CSC are mainly attributed to several factors including cellular quiescence, accumulation of ABC transporters, disruption of apoptosis, epigenetic reprogramming, and metabolism. There is a current need to develop new therapeutic drugs capable of targeting CSC to overcome tumor resistance. Emerging in vitro and in vivo studies strongly support the potential benefits of combination therapies capable of targeting cancer stem cell-targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This review will address the main characteristics, therapeutic implications, and perspectives of targeting CSC to improve current anticancer therapeutics.

2015 ◽  
Vol 113 (4) ◽  
pp. 960-965 ◽  
Author(s):  
Sarah K. C. Cheung ◽  
Po-Kai Chuang ◽  
Han-Wen Huang ◽  
Wendy W. Hwang-Verslues ◽  
Candy Hsin-Hua Cho ◽  
...  

The discovery of cancer stem cells (CSCs), which are responsible for self-renewal and tumor growth in heterogeneous cancer tissues, has stimulated interests in developing new cancer therapies and early diagnosis. However, the markers currently used for isolation of CSCs are often not selective enough to enrich CSCs for the study of this special cell population. Here we show that the breast CSCs isolated with CD44+CD24-/loSSEA-3+ or ESAhiPROCRhiSSEA-3+ markers had higher tumorigenicity than those with conventional markers in vitro and in vivo. As few as 10 cells with CD44+CD24-/loSSEA-3+ formed tumor in mice, compared with more than 100 cells with CD44+CD24-/lo. Suppression of SSEA-3 expression by knockdown of the gene encoding β-1,3-galactosyltransferase 5 (β3GalT5) in the globo-series pathway, led to apoptosis in cancer cells specifically but had no effect on normal cells. This finding is further supported by the analysis of SSEA-3 and the two related globo-series epitopes SSEA4 and globo-H in stem cells (embryonic stem cells and induced pluripotent stem cells) and various normal and cancer cells, and by the antibody approach to target the globo-series glycans and the late-stage clinical trials of a breast cancer vaccine.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1133
Author(s):  
Ji Yu ◽  
Dae Shin ◽  
Jin-Seok Kim

Fluvastatin (FLUVA), which is a common anti-hypercholesterolemia drug, exhibits potential anticancer activity as it suppresses the proliferation, angiogenesis, and metastasis of breast cancer cells via inhibiting 3-hydroxy-methyl glutaryl-coenzyme A (HMG-CoA) reductase. In this study, hyaluronan-conjugated FLUVA-encapsulating liposomes (HA-L-FLUVA) were evaluated for their anticancer efficacy in vitro and in vivo. The particle size, zeta potential, and encapsulation efficiency of HA-L-FLUVA were 158.36 ± 1.78 nm, −24.85 ± 6.26 mV, and 35%, respectively. Growth inhibition of breast cancer stem cells (BCSCs) by HA-L-FLUVA was more effective than that by free FLUVA. The half maximal inhibitory concentration (IC50) values of FLUVA, L-FLVUA, and HA-L-FLUVA were 0.16, 0.17, and 0.09 μM, respectively. The in vivo anticancer effect of HA-L-FLUVA in combination with doxorubicin (DOX) was more effective than that of free FLUVA, free DOX, and HA-L-FLUVA. The longest survival of mice was achieved by treatment with FLUVA (15 mg/kg) and HA-L-FLUVA (15 mg/kg) + DOX (3 mg/kg), followed by HA-L-FLUVA (15 mg/kg), Dulbecco’s phosphate buffered saline, and DOX (3 mg/kg). No more than 10% body weight loss was observed in the mice injected with FLUVA, indicating that the drug was not toxic. Taken together, these results indicate that HA-L-FLUVA could serve as an effective anticancer drug by inhibiting the growth of both breast cancer cells and cancer stem cells.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-321175
Author(s):  
Shumei Song ◽  
Qiongrong Chen ◽  
Yuan Li ◽  
Guang Lei ◽  
Ailing Scott ◽  
...  

ObjectiveGastro-oesophageal cancers (GEC) are resistant to therapy and lead to poor prognosis. The cancer stem cells (CSCs) and antiapoptotic pathways often confer therapy resistance. We sought to elucidate the antitumour action of a BCL-2 inhibitor, AT101 in GEC in vitro, in vivo and in a clinical trial.MethodsExtensive preclinical studies in vitro and in vivo were carried out to establish the mechanism action of AT101 on targeting CSCs and antiapoptotic proteins. A pilot clinical trial in patients with GEC was completed with AT-101 added to standard chemoradiation.ResultsOverexpression of BCL-2 and MCL-1 was noted in gastric cancer tissues (GC). AT-101 induced apoptosis, reduced proliferation and tumour sphere formation in MCL-1/BCL-2 high GC cells. Interestingly, AT101 dramatically downregulated genes (YAP-1/Sox9) that control CSCs in GEC cell lines regardless of BCL-2/MCL-1 expression. Addition of docetaxel to AT-101 amplified its antiproliferation and induced apoptosis effects. In vivo studies confirmed the combination of AT101 and docetaxel demonstrated stronger antitumour activity accompanied with significant decrease of CSCs biomarkers (YAP1/SOX9). In a pilot clinical trial, 13 patients with oesophageal cancer (EC) received AT101 orally concurrently with chemoradiation. We observed dramatic clinical complete responses and encouraging overall survival in these patients. Clinical specimen analyses revealed that AT-101 dramatically reduced the expression of CSCs genes in treated EC specimens indicating antitumour activity of AT101 relies more on its anti-CSCs activity.ConclusionsOur preclinical and clinical data suggest that AT-101 overcomes resistance by targeting CSCs pathways suggesting a novel mechanism of action of AT101 in patients with GEC.


Biomaterials ◽  
2014 ◽  
Vol 35 (33) ◽  
pp. 9177-9186 ◽  
Author(s):  
Sangeetha Krishnamurthy ◽  
Victor W.L. Ng ◽  
Shujun Gao ◽  
Min-Han Tan ◽  
Yi Yan Yang

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 972
Author(s):  
Maryam Ghanbari-Movahed ◽  
Zahra Ghanbari-Movahed ◽  
Saeideh Momtaz ◽  
Kaitlyn L. Kilpatrick ◽  
Mohammad Hosein Farzaei ◽  
...  

The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer’s disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs.


2021 ◽  
Author(s):  
Xu Han ◽  
Ge Ma ◽  
Xinyang Wang ◽  
Jingyue Fu ◽  
Jingyi Wang ◽  
...  

Abstract Background: Chemoresistance is a major obstacle in the neoadjuvant chemotherapy (NCT) of locally advanced breast cancer (LABC). Identification of miRNAs as prognostic biomarkers may help overcome chemoresistance of breast cancer (BC). The aim of this study was to evaluate the expression level of miR-1275 in plasma samples and the biological functions in the chemoresistance of BC.Methods: The expression levels of miR-1275 in plasma samples and cells were measured by RT-qPCR. The associations between the expression levels of miR-1275 and clinicopathological features were studied. CRISPR/Cas9-mediated gene editing was used to construct miR-1275 knock-out cells. CCK-8, colony formation assays, epirubicin accumulation assay and xenograft tumor models were used to detect the sensitivity of breast cancer cells to epirubicin in vitro and in vivo. Mammosphere formation assay, flow cytometry analysis and western blot analyses were used to evaluate the effects of miR-1275 on cancer stem cells (CSCs) characteristics in BC cells. Dual-luciferase reporter, RNA pulldown, ELISA and IHC were used to verify the relationship between the expression of miR-1275 and Midkine (MDK). Results: We found that miR-1275 was significantly downregulated in plasma from patients resistant to chemotherapy with LABC and in chemoresistant breast cancer cell lines, while patients with low levels of miR-1275 show poor overall survival. Mir-1275 knock-out promoted chemoresistance in breast cancer cells by increasing the properties of cancer stem cells in vitro and in vivo. Mechanistically, we identified that Midkine was determined to be direct downstream protein of miR-1275 which initiated PI3K/Akt signaling in breast cancer cells.Conclusions: We demonstrated that the high expression level of miR-1275 in plasma predicted better response to NCT. The reduction of miR-1275 promoted BC cells chemoresistance by increasing CSC properties via targeting MDK/AKT axis. The potential of miR-1275 as a new prognostic biomarker and therapeutic target of breast cancer patients was identified.


2017 ◽  
Vol 71 (0) ◽  
pp. 0-0 ◽  
Author(s):  
Agnieszka Zaczek ◽  
Paweł Jóźwiak ◽  
Anna Krześlak

BMI-1 (B-lymphoma Mo-MLV insertion region 1) protein is a constituent of Polycomb Repressive Complex 1 (PRC1) that via ubiquitination of histone H2A affects expression of many genes. BMI-1 is involved in cellular processes such as DNA repair, proliferation, growth, senescence and apoptosis. BMI-1 plays a key role in biology of stem cells including cancer stem cells by regulation of their self-renewal and differentiation. Accumulating evidence has revealed that overexpression of BMI-1 in many human cancers correlates with disease progression and therapy failure. The results of in vitro and in vivo studies confirm the involvement of BMI-1 in tumor initiation as well as invasion, metastasis and chemoresistance. Taking into account significant role of BMI1 in tumorigenesis, especially associated with cancer stem cells, it seems that this gene may be a promising target of anticancer therapies.


Author(s):  
Emilia Alors-Perez ◽  
Ricardo Blázquez-Encinas ◽  
Sonia Alcalá ◽  
Cristina Viyuela-García ◽  
Sergio Pedraza-Arevalo ◽  
...  

Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown. We explored the presence and role of SF3B1 in PDAC and interrogated its potential as an actionable target. Methods SF3B1 was analyzed in PDAC tissues, an RNA-seq dataset, and publicly available databases, examining associations with splicing alterations and key features/genes. Functional assays in PDAC cell lines and PDX-derived CSCs served to test Pladienolide-B treatment effects in vitro, and in vivo in zebrafish and mice. Results SF3B1 was overexpressed in human PDAC and associated with tumor grade and lymph-node involvement. SF3B1 levels closely associated with distinct splicing event profiles and expression of key PDAC players (KRAS, TP53). In PDAC cells, Pladienolide-B increased apoptosis and decreased multiple tumor-related features, including cell proliferation, migration, and colony/sphere formation, altering AKT and JNK signaling, and favoring proapoptotic splicing variants (BCL-XS/BCL-XL, KRASa/KRAS, Δ133TP53/TP53). Importantly, Pladienolide-B similarly impaired CSCs, reducing their stemness capacity and increasing their sensitivity to chemotherapy. Pladienolide-B also reduced PDAC/CSCs xenograft tumor growth in vivo in zebrafish and in mice. Conclusion SF3B1 overexpression represents a therapeutic vulnerability in PDAC, as altered splicing can be targeted with Pladienolide-B both in cancer cells and CSCs, paving the way for novel therapies for this lethal cancer.


Sign in / Sign up

Export Citation Format

Share Document