scholarly journals A Comprehensive Optimization Control Method for Hybrid Excitation Synchronous Motor

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Mingming Huang ◽  
Quanzhen Huang ◽  
Yang Zhang ◽  
Xinjun Guo

Hybrid excitation synchronous motor (HESM) offers the advantages of a convenient flux regulation and a wide range of available speeds. As such, it may be conveniently employed in the fields of electric vehicle and aerospace. In this paper, based on a suitable control strategy for vector and speed partition, we put forward a speed control method for HESM which shows optimal efficiency. On the one hand, our method aims at minimizing the copper loss by an optimal configuration of the q-axis current, the d-axis current, and the excitation current under the constraint voltage at the armature end. On the other hand, we conduct a comprehensive analysis of the effects of the flux-weakening speed coefficient on the operating performance of the motors and suggest a self-adaptive control method to regulate that coefficient and further improve the overall performance of the motors, including their speed-range regulation, their efficiency, and their dynamical properties. The proposed flux-weakening control method has been assessed by simulations and HESM-driven experiments. Results have confirmed the feasibility and optimality of our method.

2015 ◽  
Vol 64 (3) ◽  
pp. 427-439 ◽  
Author(s):  
Huang Mingming ◽  
Guo Xinjun ◽  
Jin Ping ◽  
Huang Quanzhen ◽  
Liu Yuping ◽  
...  

Abstract The hybrid excitation synchronous motor (HESM), which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7464
Author(s):  
Hyun-Jae Lee ◽  
Jin-Geun Shon

This paper presents an improved voltage flux-weakening strategy of a permanent magnet synchronous motor (PMSM) in a high-speed operation. The speed control performance using voltage flux-weakening control is not affected by the motor parameters, so it is used in various motors for high-speed operations. In general, the voltage flux-weakening control uses voltage references to generate a flux axis current reference. However, there may be errors between the voltage reference and the actual voltage flowing into the motor. This causes an error in the current reference generation and reduces the efficiency of the inverter and motor due to the use of more current. In this paper, the problems that can occur due to voltage errors were analyzed through theoretical approaches and simulations, and improved voltage flux-weakening control to resolve these problems was presented. This method’s advantage is that the error between the voltage reference and the voltage applied to the motor can be minimized, and the target speed can be reached with minimum current. As a result, it was possible to increase the energy efficiency by reducing the amount of current flowing through the motor. The effect of the improved voltage-based flux-weakening control method was verified through simulations and experiments. As a result, the voltage errors were reduced by approximately 2.16% compared to the general method. Moreover, the current used in the field-weakening control region was reduced by up to 27.17% under the same torque condition.


Sign in / Sign up

Export Citation Format

Share Document