scholarly journals Medical Image Segmentation Algorithm Based on Optimized Convolutional Neural Network-Adaptive Dropout Depth Calculation

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Feng-Ping An ◽  
Jun-e Liu

Medical image segmentation is a key technology for image guidance. Therefore, the advantages and disadvantages of image segmentation play an important role in image-guided surgery. Traditional machine learning methods have achieved certain beneficial effects in medical image segmentation, but they have problems such as low classification accuracy and poor robustness. Deep learning theory has good generalizability and feature extraction ability, which provides a new idea for solving medical image segmentation problems. However, deep learning has problems in terms of its application to medical image segmentation: one is that the deep learning network structure cannot be constructed according to medical image characteristics; the other is that the generalizability y of the deep learning model is weak. To address these issues, this paper first adapts a neural network to medical image features by adding cross-layer connections to a traditional convolutional neural network. In addition, an optimized convolutional neural network model is established. The optimized convolutional neural network model can segment medical images using the features of two scales simultaneously. At the same time, to solve the generalizability problem of the deep learning model, an adaptive distribution function is designed according to the position of the hidden layer, and then the activation probability of each layer of neurons is set. This enhances the generalizability of the dropout model, and an adaptive dropout model is proposed. This model better addresses the problem of the weak generalizability of deep learning models. Based on the above ideas, this paper proposes a medical image segmentation algorithm based on an optimized convolutional neural network with adaptive dropout depth calculation. An ultrasonic tomographic image and lumbar CT medical image were separately segmented by the method of this paper. The experimental results show that not only are the segmentation effects of the proposed method improved compared with those of the traditional machine learning and other deep learning methods but also the method has a high adaptive segmentation ability for various medical images. The research work in this paper provides a new perspective for research on medical image segmentation.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Feng-Ping An ◽  
Zhi-Wen Liu

With the development of computer vision and image segmentation technology, medical image segmentation and recognition technology has become an important part of computer-aided diagnosis. The traditional image segmentation method relies on artificial means to extract and select information such as edges, colors, and textures in the image. It not only consumes considerable energy resources and people’s time but also requires certain expertise to obtain useful feature information, which no longer meets the practical application requirements of medical image segmentation and recognition. As an efficient image segmentation method, convolutional neural networks (CNNs) have been widely promoted and applied in the field of medical image segmentation. However, CNNs that rely on simple feedforward methods have not met the actual needs of the rapid development of the medical field. Thus, this paper is inspired by the feedback mechanism of the human visual cortex, and an effective feedback mechanism calculation model and operation framework is proposed, and the feedback optimization problem is presented. A new feedback convolutional neural network algorithm based on neuron screening and neuron visual information recovery is constructed. So, a medical image segmentation algorithm based on a feedback mechanism convolutional neural network is proposed. The basic idea is as follows: The model for obtaining an initial region with the segmented medical image classifies the pixel block samples in the segmented image. Then, the initial results are optimized by threshold segmentation and morphological methods to obtain accurate medical image segmentation results. Experiments show that the proposed segmentation method has not only high segmentation accuracy but also extremely high adaptive segmentation ability for various medical images. The research in this paper provides a new perspective for medical image segmentation research. It is a new attempt to explore more advanced intelligent medical image segmentation methods. It also provides technical approaches and methods for further development and improvement of adaptive medical image segmentation technology.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lin Teng ◽  
Hang Li ◽  
Shahid Karim

Medical image segmentation is one of the hot issues in the related area of image processing. Precise segmentation for medical images is a vital guarantee for follow-up treatment. At present, however, low gray contrast and blurred tissue boundaries are common in medical images, and the segmentation accuracy of medical images cannot be effectively improved. Especially, deep learning methods need more training samples, which lead to time-consuming process. Therefore, we propose a novelty model for medical image segmentation based on deep multiscale convolutional neural network (CNN) in this article. First, we extract the region of interest from the raw medical images. Then, data augmentation is operated to acquire more training datasets. Our proposed method contains three models: encoder, U-net, and decoder. Encoder is mainly responsible for feature extraction of 2D image slice. The U-net cascades the features of each block of the encoder with those obtained by deconvolution in the decoder under different scales. The decoding is mainly responsible for the upsampling of the feature graph after feature extraction of each group. Simulation results show that the new method can boost the segmentation accuracy. And, it has strong robustness compared with other segmentation methods.


2018 ◽  
Vol 50 ◽  
pp. 10-14 ◽  
Author(s):  
M. Vardhana ◽  
N. Arunkumar ◽  
Sunitha Lasrado ◽  
Enas Abdulhay ◽  
Gustavo Ramirez-Gonzalez

Sign in / Sign up

Export Citation Format

Share Document