scholarly journals Fuzzy Second-Order Sliding Mode Control Design for a Two-Cell DC-DC Converter

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hanene Medhaffar ◽  
Nabil Derbel

This paper presents a fuzzy second-order sliding mode controller for a two-cell DC-DC converter. For this aim, a second-order sliding mode controller and a type-2 fuzzy system are combined to achieve an adequate control. For this reason, backgrounds on the type-2 fuzzy sets and on the second-order sliding mode control applied to discrete systems have been presented briefly. A proposed control algorithm is then presented combining these two robust approaches. The asymptotic stability of the overall controlled system has been ensured using the Lyapunov theory. The efficiency and the robustness of the proposed controller have been tested by simulations.

Author(s):  
Jinwei Sun ◽  
JingYu Cong ◽  
Liang Gu ◽  
Mingming Dong

As the possibility of faults in active suspension actuators are higher and more severe compared to other components, this study presents a fault-tolerant control approach based on the second-order sliding mode control method. The aim of the controller is to improve riding comfort, guarantee handling stability, and provide adequate suspension stroke in the presence of disturbances and actuator faults. A nonlinear full-vehicle suspension system and hydraulic actuator with nonlinear characteristics are adopted for accurate control. Firstly, a nonlinear sliding manifold based on a nonsingular fast terminal sliding mode controller is introduced to suppress the sprung mass heave, pitch, and roll motions arising from road disturbances. Secondly, a second-order sliding mode-based super twisting controller is utilized to track the desired forces generated by the nonsingular fast terminal sliding mode controller with actuator faults and uncertainties. The controllers are robust against disturbances, uncertainties, and faults. Moreover, the stability of the super twisting controller is proved by the strong Lyapunov functions. Finally, numerical simulations are performed to demonstrate the effectiveness of the controller. Four different conditions, random road profile, bump road excitation, single-wheel bump excitation, and partial faults are considered. The main contributions of this study are: (1) combination of the above algorithms to deal with actuator faults and improve active suspension performance; (2) the controller proposed in this study has a simple structure. Simulation results indicate that the nonsingular fast terminal sliding mode super twisting controller can guarantee the performance of the closed-loop system under both faulty and healthy conditions.


2018 ◽  
Vol 41 (4) ◽  
pp. 1068-1078 ◽  
Author(s):  
Lu Liu ◽  
Shihong Ding ◽  
Li Ma ◽  
Haibin Sun

In this paper, a novel discontinuous second-order sliding mode control approach has been developed to handle sliding mode dynamics with a nonvanishing mismatched disturbance by using Lyapunov theory and a finite-time disturbance observer. Firstly, the finite-time disturbance observer is designed to estimate the nonvanishing mismatched disturbance. Secondly, a virtual controller has been constructed based on the estimated value such that the sliding variable can be stabilized to zero in a finite time. Then, the real discontinuous controller is designed to guarantee that the virtual controller can be well tracked in a finite time. Lyapunov analysis also verifies the finite-time stability of the closed-loop sliding mode control system. The developed discontinuous second-order sliding mode control method possesses two appealing features including strong robustness with respect to the matched and mismatched nonvanishing disturbances, and relaxation on the constant upper bound of uncertainties widely used in a conventional second-order sliding mode. Finally, an academic example is illustrated to verify the effectiveness of the proposed method.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 863
Author(s):  
Anh-Tuan Tran ◽  
Bui Le Ngoc Minh ◽  
Van Van Huynh ◽  
Phong Thanh Tran ◽  
Emmanuel Nduka Amaefule ◽  
...  

In multi-area interconnected power systems (MAIPS), the measurement of all system states is difficult due to the lack of a sensor or the fact that it is expensive to measure. In order to solve this limitation, a new load frequency controller based on the second-order sliding mode is designed for MAIPS where the estimated state variable is used fully in the sliding surface and controller. Firstly, a model of MAIPS integrated with disturbance is introduced. Secondly, an observer has been designed and used to estimate the unmeasured variables with disturbance. Thirdly, a new second-order sliding mode control (SOSMC) law is used to reduce the chattering in the system dynamics where slide surface and sliding mode controller are designed based on system states observer. The stability of the whole system is guaranteed via the Lyapunov theory. Even though state variables are not measured, the experimental simulation results show that the frequency remains in the nominal range under load disturbances, matched and mismatched uncertainties of the MAIPS. A comparison to other controllers illustrates the superiority of the highlighted controller designed in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Chen ◽  
Yifei Wu ◽  
Renhui Du ◽  
Qingwei Chen ◽  
Xiaobei Wu

Dual-motor systems have been widely used in industrial applications, and speed synchronization of the motors can always be deteriorated by system parameter uncertainties and load torque perturbations. In this paper, a new robust control strategy for the dual-motor systems is developed by incorporating second order sliding mode control (2-SMC) techniques. The strategy is to design chatting-free control laws to stabilize speed tracking of each motor while synchronizing their velocity. In the proposed scheme, firstly, speed controller for a single motor is designed to eliminate the effects of system parameter variations and load torque perturbations. Secondly, a cross-coupled architecture based synchronous controller is designed to reduce speed error of the motors caused by characteristic inconsistency and unbalanced load torque. Stability of the closed loop system is analyzed by Lyapunov theory; it is proven that both speed tracking errors and synchronous error can converge to zero. Finally, experiments are performed to examine the effectiveness of the developed controllers. Experimental results will show the good performance of the proposed control scheme.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5965
Author(s):  
Xiaoyuan Wang ◽  
Yaopeng Zhang ◽  
Peng Gao

An active magnetic bearing (AMB) is a kind of high-performance bearing that uses controllable electromagnetic force to levitate the rotor. Its control performance directly affects the operation characteristics of high-speed motors and other electromechanical products. The magnetic bearing control model is nonlinear and difficult to control. Sliding mode control algorithm can be used in the magnetic bearing control system, but the traditional sliding mode control has the problem of high-frequency chattering, which affects the operation stability of magnetic bearings. Based on the second-order sliding mode control algorithm, a new second-order sliding mode controller for active magnetic bearing control was designed, and the stability of the designed sliding mode control law was proven by Lyapunov criterion. On the basis of the established active magnetic bearing control model, the numerical analysis of the designed controller was carried out, and the control effect was compared with that obtained by the exponential reaching law for the sliding mode control algorithm. The experimental results show that the designed sliding mode controller has better dynamic performance and stability than the exponential reaching law for the sliding mode controller.


Sign in / Sign up

Export Citation Format

Share Document