scholarly journals Inhibition of Peptidyl Arginine Deiminase-4 Prevents Renal Ischemia-Reperfusion-Induced Remote Lung Injury

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mingjun Du ◽  
Lei Yang ◽  
Jianmin Gu ◽  
Jiawei Wu ◽  
Yiwen Ma ◽  
...  

Ischemia reperfusion (IR) can lead to acute kidney injury and can be complicated by acute lung injury, which is one of the leading causes of acute kidney injury-related death. Peptidyl arginine deiminase-4 (PAD4) is a member of the PAD enzyme family and plays a critical role in inflammatory reactions and neutrophil extracellular trap formation in a variety of pathological conditions. It has been reported that PAD4 inhibition can protect certain organs from ischemic injury. In this study, we aimed to understand the mode of action of PAD4 in renal ischemia-reperfusion-mediated acute lung injury. Bilateral renal pedicle occlusion was induced for 30 min followed by reperfusion for 24 h. A specific inhibitor of PAD4, GSK484, was delivered via intraperitoneal injection to alter the PAD4 activity. The pulmonary PAD4 expression, pulmonary impairment, neutrophil infiltration, Cit-H3 expression, neutrophil extracellular trap formation, inflammatory cytokine secretion, and pulmonary apoptosis were analyzed. We found that renal ischemia reperfusion was associated with pulmonary pathological changes and increases in neutrophil infiltration, neutrophil extracellular trap formation, and inflammatory cytokine secretion in the lungs of the recipient animals. Suppression of PAD4 by GSK484 reduced remote lung injury by mitigating neutrophil infiltration, neutrophil extracellular trap formation, apoptosis, and inflammatory factor secretion. Our findings demonstrate that specific PAD4 inhibition by GSK484 may be an effective strategy to attenuate distant lung injury complicating renal ischemia-reperfusion injury.

2014 ◽  
Vol 192 (10) ◽  
pp. 4795-4803 ◽  
Author(s):  
Shaoning Jiang ◽  
Dae Won Park ◽  
Jean-Marc Tadie ◽  
Murielle Gregoire ◽  
Jessy Deshane ◽  
...  

Author(s):  
Avin Hawez ◽  
Dler Taha ◽  
Anwar Algaber ◽  
Raed Madhi ◽  
Milladur Rahman ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kento Nishida ◽  
Hiroshi Watanabe ◽  
Masako Miyahisa ◽  
Yuto Hiramoto ◽  
Hiroto Nosaki ◽  
...  

AbstractThe mortality of patients with acute kidney injury (AKI) remains high due to AKI associated-lung injury. An effective strategy for preventing both AKI and AKI-associated lung injury is urgently needed. Thioredoxin-1 (Trx) is a redox-active protein that possesses anti-oxidative, anti-apoptotic and anti-inflammatory properties including modulation of macrophage migration inhibitory factor (MIF), but its short half-life limits its clinical application. Therefore, we examined the preventive effect of a long-acting Trx, which is a fusion protein of albumin and Trx (HSA-Trx), against AKI and AKI-associated lung injury. Recombinant HSA-Trx was expressed using a Pichia expression system. AKI-induced lung injury mice were generated by bilateral renal ischemia reperfusion injury (IRI). HSA-Trx administration attenuated renal IRI and its-associated lung injury. Both renal and pulmonary oxidative stress were suppressed by HSA-Trx. Moreover, HSA-Trx inhibited elevations of plasma IL-6 and TNF-α level, and suppressed IL-6–CXCL1/2-mediated neutrophil infiltration into lung and TNF-α-mediated pulmonary apoptosis. Additionally, HSA-Trx suppressed renal IRI-induced MIF expression in kidney and lung. Administration of HSA-Trx resulted in a significant increase in the survival rate of renal IRI mice. Collectively, HSA-Trx could have therapeutic utility in preventing both AKI and AKI-associated lung injury as a consequence of its systemic and sustained multiple biological action.


2021 ◽  
Vol 49 (8) ◽  
pp. 030006052110328
Author(s):  
Zu-an Shi ◽  
Ting-ting Li ◽  
Dao-ling Kang ◽  
Hang Su ◽  
Fa-ping Tu

Objective This study examined whether the immunomodulator fingolimod (FTY720) could alleviate renal ischemia/reperfusion (I/R)-induced lung injury and explored the potential mechanisms. Methods Renal I/R was established in a rat model, and FTY720 (0.5, 1, or 2 mg/kg) was injected intraperitoneally after 15 minutes of ischemia. Pro-inflammatory cytokine levels, oxidative stress, apoptosis, and the mRNA expression of the sphingosine-1-phosphate (S1P)-related signaling pathway genes sphingosine kinase-1 (SphK1) and sphingosine kinase-2 were analyzed in lung tissue. Results Increased pro-inflammatory cytokine levels; decreased total superoxide dismutase, catalase, and glutathione peroxidase levels; increased apoptosis; and increased S1P lyase and SphK1 expression were observed following renal I/R. FTY720 reversed renal I/R-induced changes and effectively attenuated lung injury. Conclusion FTY720 protected against acute lung injury in rats subjected to renal I/R by decreasing pulmonary inflammation and apoptosis, increasing oxidative stress, and modulating S1P metabolism.


Sign in / Sign up

Export Citation Format

Share Document