scholarly journals Approximation Techniques for Solving Linear Systems of Volterra Integro-Differential Equations

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ahmad Issa ◽  
Naji Qatanani ◽  
Adnan Daraghmeh

In this paper, a collocation method using sinc functions and Chebyshev wavelet method is implemented to solve linear systems of Volterra integro-differential equations. To test the validity of these methods, two numerical examples with known exact solution are presented. Numerical results indicate that the convergence and accuracy of these methods are in good a agreement with the analytical solution. However, according to comparison of these methods, we conclude that the Chebyshev wavelet method provides more accurate results.

2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


2012 ◽  
Vol 09 (02) ◽  
pp. 1240031 ◽  
Author(s):  
BO-NAN JIANG

A least-squares meshfree collocation method is presented. The method is based on the first-order differential equations in order to result in a better conditioned linear algebraic equations, and to obtain the primary variables (displacements) and the dual variables (stresses) simultaneously with the same accuracy. The moving least-squares approximation is employed to construct the shape functions. The sum of squared residuals of both differential equations and boundary conditions at nodal points is minimized. The present method does not require any background mesh and additional evaluation points, and thus is a truly meshfree method. Unlike other collocation methods, the present method does not involve derivative boundary conditions, therefore no stabilization terms are needed, and the resulting stiffness matrix is symmetric positive definite. Numerical examples show that the proposed method possesses an optimal rate of convergence for both primary and dual variables, if the nodes are uniformly distributed. However, the present method is sensitive to the choice of the influence length. Numerical examples include one-dimensional diffusion and convection-diffusion problems, two-dimensional Poisson equation and linear elasticity problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Baiqing Sun ◽  
Kun Tang ◽  
Hongmei Zhang ◽  
Shan Xiong

Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.


2021 ◽  
Vol 21 (2) ◽  
pp. 407-422
Author(s):  
ANGBEEN IQBAL ◽  
JAMSHAD AHMAD ◽  
QAZI MAHMOOD UL HASSAN

In real world physical applications purpose, it is complicated to acquire an exact solution of fuzzy differential equations due to complexities in fuzzy arithmetic and therefore creating the need for the use of reliable and efficient techniques in the solution of fuzzy differential equations. The purpose of this research paper is to utilize the reliable analytic approach of homotopy perturbation Sumudu transform method for better understanding of systems of non-linear fuzzy integro-differential equations, while using the concept of fuzzy parameter in certain dynamical problems to remove the hurdles faced in numerical approach. These mathematical models are of great interest in engineering and physics. Some numerical examples are also given to demonstrate the efficiency and superiority of the method, followed by graphical representation of the comparison of exact and approximated solution by using Maple 2017


2011 ◽  
Vol 66 (12) ◽  
pp. 760-768 ◽  
Author(s):  
S. Abbasbandy ◽  
H. Roohani Ghehsarehb

In the current work, the telegraph equation in its general form and with an integral condition is investigated. Also the well-known homotopy analysis method (HAM) is applied and an interesting iterative algorithm is proposed for solving the problem in general form. Some numerical examples are given and compared with the exact solution to show the effectiveness of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
A. H. Bhrawy ◽  
W. M. Abd-Elhameed

A new algorithm for solving the general nonlinear third-order differential equation is developed by means of a shifted Jacobi-Gauss collocation spectral method. The shifted Jacobi-Gauss points are used as collocation nodes. Numerical examples are included to demonstrate the validity and applicability of the proposed algorithm, and some comparisons are made with the existing results. The method is easy to implement and yields very accurate results.


2013 ◽  
Vol 681 ◽  
pp. 55-59
Author(s):  
Wen Jeng Liu

Abstract. A controller gain design problem of two-dimensional (2-D) linear systems is proposed in this paper. For one-dimensional (1-D) systems, the necessary and sufficient conditions have been established for the problem, and an analytical solution for the feedback gain is given by [1]. Based on the existing 1-D analytical solution, a 2-D state feedback controller gain can be designed to achieve the desired poles. Finally, two numerical examples are shown to exhibit the validity of the proposed approach.


Author(s):  
В.П. Шапеев ◽  
В.А. Беляев

Предложен и реализован новый вариант метода коллокации и наименьших квадратов (КНК) повышенной точности для численного решения краевых задач для уравнений с частными производными (PDE, Partial Differential Equations) в треугольных областях. Реализация этого подхода и численные эксперименты выполнены на примерах решения уравнения Пуассона и бигармонического уравнения. Решение второго уравнения с повышенной точностью использовано для моделирования напряженно-деформированного состояния (НДС) изотропной треугольной пластины, находящейся под действием поперечной нагрузки. Дифференциальные задачи методом КНК проектируются в пространство полиномов четвертой степени. Граничные условия для приближенного решения задач выписываются точно на границе расчетной области, что позволяет теоретически неограниченно повышать порядок точности метода КНК. В новом варианте используются регулярная сетка с прямоугольными ячейками в области решения задачи и на границе области "одинарный" слой нерегулярных ячеек, отсеченных границей от прямоугольных ячеек начальной регулярной сетки. Треугольные нерегулярные граничные ячейки присоединяются к соседним четырехугольным или пятиугольным ячейкам, и в объединенных ячейках строится свой отдельный кусок аналитического решения. При этом в граничных ячейках, которые пересекла граница, для аппроксимации дифференциальных уравнений использованы "законтурные" (расположенные вне расчетной области) точки коллокации и точки согласования решения задачи. Эти два приема позволили существенно уменьшить обусловленность системы линейных алгебраических уравнений приближенной задачи по сравнению со случаем, когда треугольные ячейки использовались как самостоятельные для построения приближенного решения задачи и не была использована "законтурная" часть граничных ячеек. Показано преимущество рассматриваемого подхода перед подходом с применением отображения треугольной области на прямоугольную. В численных экспериментах по анализу сходимости приближенного решения различных задач на последовательности сеток установлено, что решение сходится с повышенным порядком и с высокой точностью совпадает с аналитическим решением задачи в случае, когда оно известно. A high-accuracy new version of the least squares collocation method (LSC) is proposed and implemented for the numerical solution of boundary value problems for PDEs in triangular domains. The implementation of this approach and numerical experiments are performed using the examples of the biharmonic and Poisson equations. The solution of the biharmonic equation with high accuracy is used to simulate the stress-strain state of an isotropic triangular plate under the action of a transverse load. The differential problems are projected onto the space of fourth-degree polynomials by the LSC method. The boundary conditions for the approximate solution are given exactly on the boundary of the computational domain, which allows us theoretically and indefinitely to increase the order of accuracy of the LSC. The new version of the LSC utilizes a regular grid with rectangular cells inside the domain of the solution. It is relatively easy to use a "single" layer of irregular cells that are cut off by the boundary from the rectangular cells of the initial regular grid. Triangular irregular boundary cells are joint to the adjacent quadrangular or pentagonal cells. Thus, a separate piece of the analytical solution is constructed in combined cells. The collocation and matching points situated outside the domain are used to approximate the differential equations in the boundary cells crossed by the boundary. These two methods allows us to reduce significantly the condition number of the system of linear algebraic equations in the approximate compared to the case when the triangular cells are used as independent ones for constructing an approximate solution of the problem and when the extraboundary part of the boundary cells is not used. The advantage of the proposed approach is shown in comparison with the approach using the mapping of the triangular domain onto the rectangular one. It is also shown that the approximate solution converges with a high order and is coincident with the analytical solution of the test problems with a high accuracy.


Sign in / Sign up

Export Citation Format

Share Document