scholarly journals High-Throughput Docking and Molecular Dynamics Simulations towards the Identification of Potential Inhibitors against Human Coagulation Factor XIIa

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dongfang Xu ◽  
Guangpu Xue ◽  
Bangya Peng ◽  
Zanjie Feng ◽  
Hongling Lu ◽  
...  

Human coagulation factor XIIa (FXIIa) is a trypsin-like serine protease that is involved in pathologic thrombosis. As a potential target for designing safe anticoagulants, FXIIa has received a great deal of interest in recent years. In the present study, we employed virtual high-throughput screening of 500,064 compounds within Enamine database to acquire the most potential inhibitors of FXIIa. Subsequently, 18 compounds with significant binding energy (from -65.195 to -15.726 kcal/mol) were selected, and their ADMET properties were predicted to select representative inhibitors. Three compounds (Z1225120358, Z432246974, and Z146790068) exhibited excellent binding affinity and druggability. MD simulation for FXIIa-ligand complexes was carried out to reveal the stability and inhibition mechanism of these three compounds. Through the inhibition of activated factor XIIa assay, we tested the activity of five compounds Z1225120358, Z432246974, Z45287215, Z30974175, and Z146790068, with pIC50 values of 9.3∗10−7, 3.0∗10−5, 7.8∗10−7, 8.7∗10−7, and 1.3∗10−6 M, respectively; the AMDET properties of Z45287215 and Z30974175 show not well but have better inhibition activity. We also found that compounds Z1225120358, Z45287215, Z30974175, and Z146790068 could be more inhibition of FXIIa than Z432246974. Collectively, compounds Z1225120358, Z45287215, Z30974175, and Z146790068 were anticipated to be promising drug candidates for inhibition of FXIIa.

2003 ◽  
Vol 8 (4) ◽  
pp. 453-462 ◽  
Author(s):  
Li Di ◽  
Edward H. Kerns ◽  
Yan Hong ◽  
Teresa A. Kleintop ◽  
Oliver J. Mc Connell ◽  
...  

Metabolic stability plays an important role in the success of drug candidates. First-pass metabolism is one of the major causes of poor oral bioavailability and short half-life. Traditionally, metabolic stability was evaluated at a later stage of drug discovery and required laborious manual manipulations. With the advance of high-throughput screening, combinatorial chemistry, and early profiling of drug-like properties, automated and rapid stability assays are needed to meet the increasing demand of throughput, speed, and reproducibility at earlier stages of drug discovery. The authors describe optimization of a simple, robust, high-throughput microsomal stability assay developed in a 96-well format. The assay consists of 2 automated components: robotic sample preparation for incubation and cleanup and rapid liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) analysis to determine percent remaining of the parent compound. The reagent solutions and procedural steps were optimized for automation. Variables affecting assay results were investigated. The variability introduced by microsome preparations from different sources (various vendors and batches) was studied and indicates the need for careful control. Quality control and normalization of the stability results are critical when applying the screening data, generated at different times or research sites, to discovery projects.


2005 ◽  
Vol 4 (2) ◽  
pp. 153535002005051 ◽  
Author(s):  
Robert J. Gillies ◽  
John M. Hoffman ◽  
Kit S. Lam ◽  
Anne E. Menkens ◽  
David R. Piwnica-Worms ◽  
...  

Combinatorial chemistry and high-throughput screening have become standard tools for discovering new drug candidates with suitable pharmacological properties. Now, those same technologies are starting to be applied to the problem of discovering novel in vivo imaging agents. Important differences in the biological and pharmacological properties needed for imaging agents, compared to those for a therapeutic agent, require new screening methods that emphasize those characteristics, such as optimized residence time and tissue specificity, that make for a good imaging agent candidate.


2007 ◽  
Vol 73 (20) ◽  
pp. 6436-6443 ◽  
Author(s):  
Andreas Urban ◽  
Stefan Eckermann ◽  
Beate Fast ◽  
Susanne Metzger ◽  
Matthias Gehling ◽  
...  

ABSTRACT Cells containing reporters which are specifically induced via selected promoters are used in pharmaceutical drug discovery and in environmental biology. They are used in screening for novel drug candidates and in the detection of bioactive compounds in environmental samples. In this study, we generated and validated a set of five Bacillus subtilis promoters fused to the firefly luciferase reporter gene suitable for cell-based screening, enabling the as yet most-comprehensive high-throughput diagnosis of antibiotic interference in the major biosynthetic pathways of bacteria: the biosynthesis of DNA by the yorB promoter, of RNA by the yvgS promoter, of proteins by the yheI promoter, of the cell wall by the ypuA promoter, and of fatty acids by the fabHB promoter. The reporter cells mainly represent novel antibiotic biosensors compatible with high-throughput screening. We validated the strains by developing screens with a set of 14,000 pure natural products, representing a source of highly diverse chemical entities, many of them with antibiotic activity (6% with anti-Bacillus subtilis activity of ≤25 μg/ml]). Our screening approach is exemplified by the discovery of classical and novel DNA synthesis and translation inhibitors. For instance, we show that the mechanistically underexplored antibiotic ferrimycin A1 selectively inhibits protein biosynthesis.


2009 ◽  
Vol 14 (4) ◽  
pp. 330-336 ◽  
Author(s):  
Eszter Pais ◽  
John S. Cambridge ◽  
Cage S. Johnson ◽  
Herbert J. Meiselman ◽  
Timothy C. Fisher ◽  
...  

Although the pathophysiology and molecular basis of sickle cell disease (SCD) were described more than half a century ago, an effective and safe therapy is not yet available. This may be explained by the lack of a suitable high-throughput technique that allows rapid screening of thousands of compounds for their antisickling effect. The authors have thus developed a novel high-throughput screening (HTS) assay based on detecting the ability of red blood cells (RBC) to traverse a column of tightly packed Sephacryl chromatography beads. When deoxygenated, sickle RBC are rigid and remain on the top of the column. However, when deoxygenated and treated with an effective antisickling agent, erythrocytes move through the Sephacryl media and produce a red dot on the bottom of the assay tubes. This approach has been adapted to wells in a 384-well microplate. Results can be obtained by optical scanning: The size of the red dot is proportional to the antisickling effect of the test molecule. The new assay is simple, inexpensive, reproducible, requires no special reagents, and should be readily adaptable to robotic HTS systems. It has the potential to identify novel drug candidates, allowing the development of new therapeutic options for individuals affected with SCD. ( Journal of Biomolecular Screening. 2009:330-336)


1997 ◽  
Vol 2 (3) ◽  
pp. 153-157 ◽  
Author(s):  
Geoffrey W. Mellor ◽  
Simon J. Fogarty ◽  
M. Shane O'Brien ◽  
Miles Congreve ◽  
Martyn N. Banks ◽  
...  

Identification of putative drug candidates by high throughput screening is assuming enormous importance within the pharmaceutical industry, driven by increasing numbers of valid therapeutic targets from both classical and molecular biological sources. Screening is an applied discipline that requires equipment and, more importantly, thinking that is fundamentally different from more traditional, lower throughput assay methodology. This article describes the process as applied to the discovery of selective antagonists of three chemokine receptor binding systems, from the original biological targets to chemically prosecutable lead compounds, which are currently being investigated using traditional medicinal and combinatorial chemistry methods.


MRS Advances ◽  
2021 ◽  
Author(s):  
Takeshi Aoyagi

Abstract We achieved high-throughput prediction of the stress–strain (S–S) curves of thermoplastic elastomers by combining hierarchical simulation and deep learning. ABA triblock copolymer with a phase-separated structure was used as a thermoplastic elastomer model. The S–S curves of the ABA triblock copolymers were calculated from the hierarchical simulation of self-consistent field theory calculations and coarse-grained molecular dynamics simulations. Because such hierarchical simulations require considerable computational resources, we applied a deep learning technique to accelerate the prediction. Sets of phase-separated structures and the S–S curves obtained from the hierarchical simulation were used to train a 3D convolutional neural network. Using the trained network, we confirmed that the predicted S–S curves of the untrained structures accurately reproduced the simulation results. These results will enable us to design novel polymers and phase-separated structures with desired S–S curves by high-throughput screening of a wide variety of structures. Graphic abstract


2021 ◽  
Author(s):  
Hassan Aljama ◽  
Martin Head-Gordon ◽  
Alexis Bell

Abstract Cation exchanged-zeolites are functional materials with a wide range of applications from catalysis to sorbents. They present a challenge for computational studies using density functional theory due to the numerous possible active sites. From Al configuration, to placement of extra framework cation(s), to potentially different oxidation states of the cation, accounting for all these possibilities is not trivial. To make the number of calculations more tractable, most studies focus on a few active sites. We attempt to go beyond these limitations by implementing a workflow for a high throughput screening, designed to systematize the problem and exhaustively search for feasible active sites. We use Pd-exchanged CHA and BEA to illustrate the approach. After conducting thousands of individual calculations, we identify the sites most favorable for the Pd cation and discuss the results in detail. The high throughput screening identifies many energetically favorable sites that are non-trivial. Lastly, we employ these results to examine NO adsorption in Pd-exchanged CHA, which is a promising passive NOx adsorbent (PNA) during the cold start of automobiles. The results shed light on critical active sites for NOx capture that were not previously studied.


Author(s):  
Senthil Kumar Subramani ◽  
Yash Gupta ◽  
Manish Manish ◽  
GBKS Prasad

Gymnema sylvestre (GS) is one of the herbal plant used since in ancient times. The present study aimed to assess bioactive compounds GS mainly gymnemic acids as potential inhibitors for COVID-19 against Mpro enzyme using a molecular docking study. The docking score observed between -53.4 to - 42.4 of all gymnemic acids and its derivatives. Molecular Dynamics (MD) simulation studies carried out at 100ns supported the stability of GS molecules within the binding pocket. RMSD score of less than 3.6. mainly, our results supported that these GS molecules bind to the domain I & II, and domain II-III linker of 3CLpro enzyme, suggesting its suitability as strong candidate for therapeutic against COVID-19. <br>


Sign in / Sign up

Export Citation Format

Share Document