scholarly journals Clustering Ensemble Model Based on Self-Organizing Map Network

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Wenqi Hua ◽  
Lingfei Mo

This paper proposes a clustering ensemble method that introduces cascade structure into the self-organizing map (SOM) to solve the problem of the poor performance of a single clusterer. Cascaded SOM is an extension of classical SOM combined with the cascaded structure. The method combines the outputs of multiple SOM networks in a cascaded manner using them as an input to another SOM network. It also utilizes the characteristic of high-dimensional data insensitivity to changes in the values of a small number of dimensions to achieve the effect of ignoring part of the SOM network error output. Since the initial parameters of the SOM network and the sample training order are randomly generated, the model does not need to provide different training samples for each SOM network to generate a differentiated SOM clusterer. After testing on several classical datasets, the experimental results show that the model can effectively improve the accuracy of pattern recognition by 4%∼10%.

2014 ◽  
Vol 41 (3) ◽  
pp. 341-355 ◽  
Author(s):  
Yi Xiao ◽  
Rui-Bin Feng ◽  
Zi-Fa Han ◽  
Chi-Sing Leung

2020 ◽  
Vol 92 (15) ◽  
pp. 10450-10459 ◽  
Author(s):  
Wil Gardner ◽  
Ruqaya Maliki ◽  
Suzanne M. Cutts ◽  
Benjamin W. Muir ◽  
Davide Ballabio ◽  
...  

Author(s):  
Melody Y. Kiang ◽  
Dorothy M. Fisher ◽  
Michael Y. Hu ◽  
Robert T. Chi

This chapter presents an extended Self-Organizing Map (SOM) network and demonstrates how it can be used to forecast market segment membership. The Kohonen’s SOM network is an unsupervised learning neural network that maps n-dimensional input data to a lower dimensional (usually one- or two-dimensional) output map while maintaining the original topological relations. We apply an extended version of SOM networks that further groups the nodes on the output map into a user-specified number of clusters to a residential market data set from AT&T. Specifically, the extended SOM is used to group survey respondents using their attitudes towards modes of communication. We then compare the extended SOM network solutions with a two-step procedure that uses the factor scores from factor analysis as inputs to K-means cluster analysis. Results using AT&T data indicate that the extended SOM network performs better than the two-step procedure.


2019 ◽  
Vol 29 (01) ◽  
pp. 2050002
Author(s):  
Khaled Ben Khalifa ◽  
Ahmed Ghazi Blaiech ◽  
Mehdi Abadi ◽  
Mohamed Hedi Bedoui

In this paper, we present a new generic architectural approach of a Self-Organizing Map (SOM). The proposed architecture, called the Diagonal-SOM (D-SOM), is described as an Hardware–Description-Language as an intellectual property kernel with easily adjustable parameters.The D-SOM architecture is based on a generic formalism that exploits two levels of the nested parallelism of neurons and connections. This solution is therefore considered as a system based on the cooperation of a distributed set of independent computations. The organization and structure of these calculations process an oriented data flow in order to find a better treatment distribution between different neuroprocessors. To validate the D-SOM architecture, we evaluate the performance of several SOM network architectures after their integration on a Xilinx Virtex-7 Field Programmable Gate Array support. The proposed solution allows the easy adaptation of learning to a large number of SOM topologies without any considerable design effort. [Formula: see text] SOM hardware is validated through FPGA implementation, where temporal performance is almost twice as fast as that obtained in the recent literature. The suggested D-SOM architecture is also validated through simulation on variable-sized SOM networks applied to color vector quantization.


2005 ◽  
Vol 4 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Timo Similä

One of the main tasks in exploratory data analysis is to create an appropriate representation for complex data. In this paper, the problem of creating a representation for observations lying on a low-dimensional manifold embedded in high-dimensional coordinates is considered. We propose a modification of the Self-organizing map (SOM) algorithm that is able to learn the manifold structure in the high-dimensional observation coordinates. Any manifold learning algorithm may be incorporated to the proposed training strategy to guide the map onto the manifold surface instead of becoming trapped in local minima. In this paper, the Locally linear embedding algorithm is adopted. We use the proposed method successfully on several data sets with manifold geometry including an illustrative example of a surface as well as image data. We also show with other experiments that the advantage of the method over the basic SOM is restricted to this specific type of data.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiuhui Tan ◽  
Hongping Hu ◽  
Rong Cheng ◽  
Yanping Bai

An effective two-level self-organizing map (SOM) neural network for direction of arrival (DOA) of sound signals estimation is proposed. The approach is based on the distance difference of arrival (DDOA) and a uniform linear sensor array in a 2D plane; it performs a nonlinear mapping between the DDOA vectors and angles of arrival (AOA). We found that the topological order of DDOA vectors and AOAs of same signals is uniform; thus, the topological order preserving of SOM network makes it valid to estimate AOA through DDOA. From the results of simulations and lake experiments, it is shown that the network has the advantage of accuracy and robustness, can be trained in advance, and is easy to implement.


Sign in / Sign up

Export Citation Format

Share Document