som network
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 1207 (1) ◽  
pp. 012012
Author(s):  
Shiwei Yan ◽  
Haining Liu ◽  
Fajia Li ◽  
Huanyong Cui

Abstract Rolling element bearings are widely used in rotating machinery. Bearing faults will result in damage to property. So, the condition monitoring of bearings is of great significance, but few methods can achieve both degradation assessment and fault diagnosis. In this paper, an integrated condition monitoring method for rolling element bearings based on perceptual vibration hashing (PVH) and self-organizing maps (SOM) is proposed. Distance matric based on PVH is used as a health indicator for degradation assessment, in which the baseline of healthy state is selected based on the clustering centre of SOM instead of experience. When the value of health indicator exceeds the pre-set threshold, visualized fault diagnosis can also be achieved by training the SOM network. The effectiveness of the developed method is verified with the vibration data from accelerated degradation tests of rolling element bearings.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012072
Author(s):  
Hongyi Li ◽  
Tianshi Xu ◽  
Haoran Lian ◽  
Wei Chen ◽  
Di Zhao

Abstract With the wide application of communication technology, the threat of interference is becoming more and more serious. These disturbances usually appear as higher-dimensional vectors, and the nuances between the different vectors are indistinguishable to humans. A great deal of research has been done on how to deal with this interference in an automated way. But most of the computation time in these studies was spent on the training and computation of the convolution layer. As the electromagnetic equipment tends to be a large inheritance system, the electromagnetic signal also presents higher dimensional characteristics. Then the convolutional neural network represented must use larger and more convolutional layers, so the time cost is very high. Therefore, feature extraction of the original signal is carried out before clustering. After adjusting the selection of features, the algorithm performs well on our dataset.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4612
Author(s):  
Zhenen Li ◽  
Xinyan Zhang ◽  
Tusongjiang Kari ◽  
Wei Hu

Vibration signals contain abundant information that reflects the health status of wind turbine high-speed shaft bearings ((HSSBs). Accurate health assessment and remaining useful life (RUL) prediction are the keys to the scientific maintenance of wind turbines. In this paper, a method based on the combination of a comprehensive evaluation function and a self-organizing feature map (SOM) network is proposed to construct a health indicator (HI) curve to characterizes the health state of HSSBs. Considering the difficulty in obtaining life cycle data of similar equipment in a short time, the exponential degradation model is selected as the degradation trajectory of HSSBs on the basis of the constructed HI curve, the Bayesian update model, and the expectation–maximization (EM) algorithm are used to predict the RUL of HSSBs. First, the time domain, frequency domain, and time–frequency domain degradation features of HSSBs are extracted. Second, a comprehensive evaluation function is constructed and used to select the degradation features with good performance. Third, the SOM network is used to fuse the selected degradation features to construct a one-dimensional HI curve. Finally, the exponential degradation model is selected as the degradation trajectory of HSSBs, and the Bayesian update and EM algorithm are used to predict the RUL of the HSSB. The monitoring data of a wind turbine HSSB in actual operation is used to validate the model. The HI curve constructed by the method in this paper can better reflect the degradation process of HSSBs. In terms of life prediction, the method in this paper has better prediction accuracy than the SVR model.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Wenqi Hua ◽  
Lingfei Mo

This paper proposes a clustering ensemble method that introduces cascade structure into the self-organizing map (SOM) to solve the problem of the poor performance of a single clusterer. Cascaded SOM is an extension of classical SOM combined with the cascaded structure. The method combines the outputs of multiple SOM networks in a cascaded manner using them as an input to another SOM network. It also utilizes the characteristic of high-dimensional data insensitivity to changes in the values of a small number of dimensions to achieve the effect of ignoring part of the SOM network error output. Since the initial parameters of the SOM network and the sample training order are randomly generated, the model does not need to provide different training samples for each SOM network to generate a differentiated SOM clusterer. After testing on several classical datasets, the experimental results show that the model can effectively improve the accuracy of pattern recognition by 4%∼10%.


2020 ◽  
Vol 12 (7) ◽  
pp. 119
Author(s):  
Vita Santa Barletta ◽  
Danilo Caivano ◽  
Antonella Nannavecchia ◽  
Michele Scalera

The diffusion of embedded and portable communication devices on modern vehicles entails new security risks since in-vehicle communication protocols are still insecure and vulnerable to attacks. Increasing interest is being given to the implementation of automotive cybersecurity systems. In this work we propose an efficient and high-performing intrusion detection system based on an unsupervised Kohonen Self-Organizing Map (SOM) network, to identify attack messages sent on a Controller Area Network (CAN) bus. The SOM network found a wide range of applications in intrusion detection because of its features of high detection rate, short training time, and high versatility. We propose to extend the SOM network to intrusion detection on in-vehicle CAN buses. Many hybrid approaches were proposed to combine the SOM network with other clustering methods, such as the k-means algorithm, in order to improve the accuracy of the model. We introduced a novel distance-based procedure to integrate the SOM network with the K-means algorithm and compared it with the traditional procedure. The models were tested on a car hacking dataset concerning traffic data messages sent on a CAN bus, characterized by a large volume of traffic with a low number of features and highly imbalanced data distribution. The experimentation showed that the proposed method greatly improved detection accuracy over the traditional approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Na Qu ◽  
Jiatong Chen ◽  
Jiankai Zuo ◽  
Jinhai Liu

Self-organizing feature map (SOM) neural network is a kind of competitive neural network with unsupervised learning. It has the strong abilities of self-organization and self-learning. However, the classification accuracy of SOM neural network may decrease when the features of tested object are not obvious. In this paper, the particle swarm optimization (PSO) algorithm is used to optimize the weight values of SOM network. Three indexes, i.e., intra-class density, standard deviation and sample difference, are used to judge the weight value, which can improve the classification accuracy of the SOM network. PSO–SOM network is applied to the detection of series arc fault in electrical circuits and compared with conventional SOM network and learning vector quantization (LVQ) network. The detection accuracy of the PSO–SOM network is 95%, which is higher than conventional SOM network and LVQ network.


Measurement ◽  
2019 ◽  
Vol 145 ◽  
pp. 370-378 ◽  
Author(s):  
Feng Nan ◽  
Yang Li ◽  
XueYong Jia ◽  
LiYan Dong ◽  
YongJie Chen

Algorithms ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 183
Author(s):  
Kexin Li ◽  
Jun Wang ◽  
Dawei Qi

A number of intelligent warning techniques have been implemented for detecting underwater infrastructure diagnosis to partially replace human-conducted on-site inspections. However, the extensively varying real-world situation (e.g., the adverse environmental conditions, the limited sample space, and the complex defect types) can lead to challenges to the wide adoption of intelligent warning techniques. To overcome these challenges, this paper proposed an intelligent algorithm combing gray level co-occurrence matrix (GLCM) with self-organization map (SOM) for accurate diagnosis of the underwater structural damage. In order to optimize the generative criterion for GLCM construction, a triangle algorithm was proposed based on orthogonal experiments. The constructed GLCM were utilized to evaluate the texture features of the regions of interest (ROI) of micro-injury images of underwater structures and extracted damage image texture characteristic parameters. The digital feature screening (DFS) method was used to obtain the most relevant features as the input for the SOM network. According to the unique topology information of the SOM network, the classification result, recognition efficiency, parameters, such as the network layer number, hidden layer node, and learning step, were optimized. The robustness and adaptability of the proposed approach were tested on underwater structure images through the DFS method. The results showed that the proposed method revealed quite better performances and can diagnose structure damage in underwater realistic situations.


Sign in / Sign up

Export Citation Format

Share Document