scholarly journals Dynamic Analysis of a Tapered Composite Thin-Walled Rotating Shaft Embedded with SMA Wires Using the Generalized Differential Quadrature Method

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Weiyan Zhong ◽  
Feng Gao ◽  
Yongsheng Ren ◽  
Xiaoxiao Wu ◽  
Hongcan Ma

A dynamical model is developed for the tapered composite thin-walled rotating shaft with shape memory alloy (SMA) wires embedded in. The SMA wires are embedded at an interlayer of the shaft and arranged along the conical surface of the tapered composite shaft. Recovery stresses generated during the phase transformation are calculated based on one-dimensional Brinson’s model. The governing equations are obtained based on a refined variational asymptotic method (VAM) and Hamilton’s principle. The partial differential equations of motion are reduced to the ordinary differential governing equations by using the generalized differential quadrature method (GDQM). Numerical results of natural frequencies and critical speeds are obtained. The effects of the fraction of SMA wires, the initial strain of SMA wires, temperature, ply angle, taper ratio, boundary conditions, and rotating speed on the frequency characteristics are investigated.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Weiyan Zhong ◽  
Feng Gao ◽  
Yongsheng Ren ◽  
Xiaoxiao Wu ◽  
Hongcan Ma

A dynamic model of a tapered composite thin-walled rotating shaft is presented. In this model, the transverse shear deformation, rotary inertia, and gyroscopic effects have been incorporated. The equations of motion are derived based on a refined variational asymptotic method (VAM) and Hamilton’s principle. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the generalized differential quadrature method (GDQM). The validity of the dynamic model is proved by comparing the numerical results with those obtained in the literature and by using ANSYS. The effects of taper ratio, boundary conditions, ply angle, length to mean radius ratios, and mean radius to thickness ratios on the natural frequencies and critical rotating speeds are investigated.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Weiyan Zhong ◽  
Feng Gao ◽  
Yongsheng Ren

A refined variational asymptotic method (VAM) and Hamilton’s principle were used to establish the free vibration differential equations of a rotating composite thin-walled shaft with circumferential uniform stiffness (CUS) configuration. The generalized differential quadrature method (GDQM) was adopted to discretize and solve the governing equations. The accuracy and efficiency of the GDQM were validated in analyzing the frequency of a rotating composite shaft. Compared to the available results in literature, the computational results by the GDQM are accurate. In addition, effects of boundary conditions, rotating speed, ply angle, ratio of radius over thickness, and ratio of length over radius on the frequency characteristics were also investigated.


2010 ◽  
Vol 26 (1) ◽  
pp. 61-70 ◽  
Author(s):  
M. Ghayour ◽  
S. Ziaei Rad ◽  
R. Talebitooti ◽  
M. Talebitooti

AbstractFree vibration analysis of rotating composite laminated conical shells with different boundary conditions using the generalized differential quadrature method (GDQM), is investigated. Equations of motion are derived based on Love's first approximation theory by taking the effects of initial hoop tension and the centrifugal and Coriolis acceleration due to rotation and initial uniform pressure load into account. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equation applying the GDQM. The results are obtained for the frequency characteristics of different orthotropic parameters, rotating velocities, cone angles and boundary conditions. The presented results are compared with those available in the literature and good agreements are achieved.


Sign in / Sign up

Export Citation Format

Share Document