scholarly journals Dynamic Analysis of a Tapered Composite Thin-Walled Rotating Shaft Using the Generalized Differential Quadrature Method

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Weiyan Zhong ◽  
Feng Gao ◽  
Yongsheng Ren ◽  
Xiaoxiao Wu ◽  
Hongcan Ma

A dynamic model of a tapered composite thin-walled rotating shaft is presented. In this model, the transverse shear deformation, rotary inertia, and gyroscopic effects have been incorporated. The equations of motion are derived based on a refined variational asymptotic method (VAM) and Hamilton’s principle. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the generalized differential quadrature method (GDQM). The validity of the dynamic model is proved by comparing the numerical results with those obtained in the literature and by using ANSYS. The effects of taper ratio, boundary conditions, ply angle, length to mean radius ratios, and mean radius to thickness ratios on the natural frequencies and critical rotating speeds are investigated.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Weiyan Zhong ◽  
Feng Gao ◽  
Yongsheng Ren ◽  
Xiaoxiao Wu ◽  
Hongcan Ma

A dynamical model is developed for the tapered composite thin-walled rotating shaft with shape memory alloy (SMA) wires embedded in. The SMA wires are embedded at an interlayer of the shaft and arranged along the conical surface of the tapered composite shaft. Recovery stresses generated during the phase transformation are calculated based on one-dimensional Brinson’s model. The governing equations are obtained based on a refined variational asymptotic method (VAM) and Hamilton’s principle. The partial differential equations of motion are reduced to the ordinary differential governing equations by using the generalized differential quadrature method (GDQM). Numerical results of natural frequencies and critical speeds are obtained. The effects of the fraction of SMA wires, the initial strain of SMA wires, temperature, ply angle, taper ratio, boundary conditions, and rotating speed on the frequency characteristics are investigated.


2019 ◽  
Vol 55 (1-2) ◽  
pp. 42-52
Author(s):  
Milad Ranjbaran ◽  
Rahman Seifi

This article proposes a new method for the analysis of free vibration of a cracked isotropic plate with various boundary conditions based on Kirchhoff’s theory. The isotropic plate is assumed to have a part-through surface or internal crack. The crack is considered parallel to one of the plate edges. Existence of the crack modified the governing differential equations which were formulated based on the line-spring model. Generalized differential quadrature method discretizes the obtained governing differential equations and converts them into an algebraic system of equations. Then, an eigenvalue analysis was used to determine the natural frequencies of the cracked plates. Some numerical results are given to demonstrate the accuracy and convergence of the obtained results. To demonstrate the efficiency of the method, the results were compared with finite element solutions and available literature. Also, effects of the crack depth, its location along the thickness, the length of the crack and different boundary conditions on the natural frequencies were investigated.


Author(s):  
Elgiz Baskaya ◽  
Melih Fidanoglu ◽  
Guven Komurgoz ◽  
Ibrahim Ozkol

In this work, nanofluid flow characteristics of an inclined channel flow exposed to constant magnetic field and pressure gradient is investigated. The nanofluid considered is water based Cu nanoparticles with a volume fraction of 0.06. The viscous dissipation is taken into account in the energy equation and the governing differential equations are nondimensionalized. The coupled one dimensional differential equations are solved via Generalized Differential Quadrature Method (GDQM) discretization followed by Newton Raphson method. Furthermore, the effect of magnetic field, inclination angle of the channel and volume fraction on nanoparticles in the nanofluid on velocity and temperature profiles are examined and represented by figures to give a thorough understanding of the system behavior. Designing systems utilizing nanofluids optimally, is highly dependent to achieving accurate model definitions figuring their inherent performance.


2010 ◽  
Vol 26 (1) ◽  
pp. 61-70 ◽  
Author(s):  
M. Ghayour ◽  
S. Ziaei Rad ◽  
R. Talebitooti ◽  
M. Talebitooti

AbstractFree vibration analysis of rotating composite laminated conical shells with different boundary conditions using the generalized differential quadrature method (GDQM), is investigated. Equations of motion are derived based on Love's first approximation theory by taking the effects of initial hoop tension and the centrifugal and Coriolis acceleration due to rotation and initial uniform pressure load into account. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equation applying the GDQM. The results are obtained for the frequency characteristics of different orthotropic parameters, rotating velocities, cone angles and boundary conditions. The presented results are compared with those available in the literature and good agreements are achieved.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Weiyan Zhong ◽  
Feng Gao ◽  
Yongsheng Ren

A refined variational asymptotic method (VAM) and Hamilton’s principle were used to establish the free vibration differential equations of a rotating composite thin-walled shaft with circumferential uniform stiffness (CUS) configuration. The generalized differential quadrature method (GDQM) was adopted to discretize and solve the governing equations. The accuracy and efficiency of the GDQM were validated in analyzing the frequency of a rotating composite shaft. Compared to the available results in literature, the computational results by the GDQM are accurate. In addition, effects of boundary conditions, rotating speed, ply angle, ratio of radius over thickness, and ratio of length over radius on the frequency characteristics were also investigated.


Sign in / Sign up

Export Citation Format

Share Document