scholarly journals Anti-Synchronization of Fractional-Order Chaotic Circuit with Memristor via Periodic Intermittent Control

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fanqi Meng ◽  
Xiaoqin Zeng ◽  
Zuolei Wang ◽  
Xinjun Wang

In this paper, the anti-synchronization of fractional-order chaotic circuit with memristor (FCCM) is investigated via a periodic intermittent control scheme. Based on the principle of periodic intermittent control and the Lyapunov stability theory, a novel criterion is adopted to realize the anti-synchronization of FCCM. Finally, some examples of numerical simulations are exploited to verify the feasibility of theoretical analysis.

2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Junjian Huang ◽  
Chuandong Li ◽  
Wei Zhang ◽  
Pengcheng Wei ◽  
Qi Han

Different from the most existing results, in this paper an intermittent control scheme is designed to achieve lag synchronization of coupled hyperchaotic systems. Several sufficient conditions ensuring lag synchronization are proposed by rigorous theoretical analysis with the help of the Lyapunov stability theory. Numerical simulations are also presented to show the effectiveness and feasibility of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaobing Zhou ◽  
Lianglin Xiong ◽  
Xiaomei Cai

This paper investigates the combination-combination synchronization of four nonlinear complex chaotic systems. Based on the Lyapunov stability theory, corresponding controllers to achieve combination-combination synchronization among four different nonlinear complex chaotic systems are derived. The special cases, such as combination synchronization and projective synchronization, are studied as well. Numerical simulations are given to illustrate the theoretical analysis.


Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


2014 ◽  
Vol 24 (3) ◽  
pp. 257-270 ◽  
Author(s):  
Bohui Wen ◽  
Mo Zhao ◽  
Fanyu Meng

Abstract This paper investigates the pinning synchronization of two general complex dynamical networks with lag. The coupling configuration matrices in the two networks are not need to be symmetric or irreducible. Several convenient and useful criteria for lag synchronization are obtained based on the lemma of Schur complement and the Lyapunov stability theory. Especially, the minimum number of controllers in pinning control can be easily obtained. At last, numerical simulations are provided to verify the effectiveness of the criteria


2013 ◽  
Vol 325-326 ◽  
pp. 1210-1214
Author(s):  
Costin Ene

In this paper, an adaptive backstepping type design is proposed to control the complex nonlinear behavior of the wing rock phenomenon. This method, based on Lyapunov stability theory, can simultaneouslyachieve parameters identification and control.Finally numerical simulations are presented to justify the effectiveness of the proposed controller.


2008 ◽  
Vol 15 (04) ◽  
pp. 371-382 ◽  
Author(s):  
M. M. Al-sawalha ◽  
M. S. M. Noorani

This paper brings attention to hyperchaos anti-synchronization between two identical and distinctive hyperchaotic systems using active control theory. The sufficient conditions for achieving anti-synchronization of two high dimensional hyperchaotic systems is derived based on Lyapunov stability theory, where the controllers are designed by using the sum of relevant variables in hyperchaotic systems. Numerical results are presented to justify the theoretical analysis strategy.


Author(s):  
Shko Ali-Tahir ◽  
Murat Sari ◽  
Abderrahman Bouhamidi

The main objective of this work is to discuss a generalized synchronization of a coupled chaotic identicaland nonidentical dynamical systems. We propose a method used to study generalized synchronization in masterslavesystems. This method, is based on the classical Lyapunov stability theory, utilizes the master continuous timechaotic system to monitor the synchronized motions. Various numerical simulations are performed to verify theeffectiveness of the proposed approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qing Wang ◽  
Yongguang Yu ◽  
Hu Wang

The robust synchronization of hyperchaotic systems with uncertainties and external disturbances is investigated. Based on the Lyapunov stability theory, the appropriate adaptive controllers and parameter update laws are designed to achieve the synchronization of uncertain hyperchaotic systems. The robust synchronization of two hyperchaotic Chen systems is taken as an example to verify the feasibility of the presented schemes. The size of the subcontroller gain’s influences on the convergence speed is discussed. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed synchronization schemes.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Pengyu Li ◽  
Juan Du ◽  
Shouliang Li ◽  
Yazhao Zheng ◽  
Bowen Jia

In this paper, we investigate a novel synchronization method, which consists of nn≥2 cascade-coupled chaotic systems. Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bidirectional coupling synchronization. Based on Lyapunov stability theory, a general criterion is proposed for choosing the appropriate coupling parameters to ensure cascading synchronization. Moreover, 4 Lü systems are taken as an example and the corresponding numerical simulations demonstrate the effectiveness of our idea.


2011 ◽  
Vol 25 (04) ◽  
pp. 521-529 ◽  
Author(s):  
MALA MITRA ◽  
SANTO BANERJEE

Secure communications via chaotic synchronization is demonstrated in this literature. At first we have designed a feedback controller for chaotic synchronization utilizing the Lyapunov stability theory for cascade-connected systems.The method has been applied successfully to make two identical systems globally asymptotically synchronized. The result of numerical simulations are given to validate the effectiveness of this method. Then we have discussed a new method of cryptography for this coupled system which is very simple to implement and effective.


Sign in / Sign up

Export Citation Format

Share Document