scholarly journals An Enhanced VMD with the Guidance of Envelope Negentropy Spectrum for Bearing Fault Diagnosis

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Haien Wang ◽  
Xingxing Jiang ◽  
Wenjun Guo ◽  
Juanjuan Shi ◽  
Zhongkui Zhu

Currently, study on the relevant methods of variational mode decomposition (VMD) is mainly focused on the selection of the number of decomposed modes and the bandwidth parameter using various optimization algorithms. Most of these methods utilize the genetic-like algorithms to quantitatively analyze these parameters, which increase the additional initial parameters and inevitably the computational burden due to ignoring the inherent characteristics of the VMD. From the perspective to locate the initial center frequency (ICF) during the VMD decomposition process, we propose an enhanced VMD with the guidance of envelope negentropy spectrum for bearing fault diagnosis, thus effectively avoiding the drawbacks of the current VMD-based algorithms. First, the ICF is coarsely located by envelope negentropy spectrum (ENS) and the fault-related modes are fast extracted by incorporating the ICF into the VMD. Then, the fault-related modes are adaptively optimized by adjusting the bandwidth parameters. Lastly, in order to identify fault-related features, the Hilbert envelope demodulation technique is used to analyze the optimal mode obtained by the proposed method. Analysis results of simulated and experimental data indicate that the proposed method is effective to extract the weak faulty characteristics of bearings and has advantage over some advanced methods. Moreover, a discussion on the extension of the proposed method is put forward to identify multicomponents for broadening its applied scope.

2013 ◽  
Vol 694-697 ◽  
pp. 1160-1166
Author(s):  
Ke Heng Zhu ◽  
Xi Geng Song ◽  
Dong Xin Xue

This paper presents a fault diagnosis method of roller bearings based on intrinsic mode function (IMF) kurtosis and support vector machine (SVM). In order to improve the performance of kurtosis under strong levels of background noise, the empirical mode decomposition (EMD) method is used to decompose the bearing vibration signals into a number of IMFs. The IMF kurtosis is then calculated because of its sensitivity of impulses caused by faults. Subsequently, the IMF kurtosis values are treated as fault feature vectors and input into SVM for fault classification. The experimental results show the effectiveness of the proposed approach in roller bearing fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document